在网络边缘实现智能:联合学习综述

H. Howard, Zhao Zhongyuan, Tony Q. S. Quek
{"title":"在网络边缘实现智能:联合学习综述","authors":"H. Howard, Zhao Zhongyuan, Tony Q. S. Quek","doi":"10.12142/ZTECOM.202002002","DOIUrl":null,"url":null,"abstract":"The burgeoning advances in machine learning and wireless technologies are forg⁃ ing a new paradigm for future networks, which are expected to possess higher degrees of in⁃ telligence via the inference from vast dataset and being able to respond to local events in a timely manner. Due to the sheer volume of data generated by end-user devices, as well as the increasing concerns about sharing private information, a new branch of machine learn⁃ ing models, namely federated learning, has emerged from the intersection of artificial intelli⁃ gence and edge computing. In contrast to conventional machine learning methods, federated learning brings the models directly to the device for training, where only the resultant param⁃ eters shall be sent to the edge servers. The local copies of the model on the devices bring along great advantages of eliminating network latency and preserving data privacy. Never⁃ theless, to make federated learning possible, one needs to tackle new challenges that require a fundamental departure from standard methods designed for distributed optimizations. In this paper, we aim to deliver a comprehensive introduction of federated learning. Specifical⁃ ly, we first survey the basis of federated learning, including its learning structure and the distinct features from conventional machine learning models. We then enumerate several critical issues associated with the deployment of federated learning in a wireless network, and show why and how technologies should be jointly integrated to facilitate the full imple⁃ mentation from different perspectives, ranging from algorithmic design, on-device training, to communication resource management. Finally, we conclude by shedding light on some po⁃ tential applications and future trends.","PeriodicalId":61991,"journal":{"name":"ZTE Communications","volume":"18 1","pages":"2-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enabling Intelligence at Network Edge:An Overview of Federated Learning\",\"authors\":\"H. Howard, Zhao Zhongyuan, Tony Q. S. Quek\",\"doi\":\"10.12142/ZTECOM.202002002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The burgeoning advances in machine learning and wireless technologies are forg⁃ ing a new paradigm for future networks, which are expected to possess higher degrees of in⁃ telligence via the inference from vast dataset and being able to respond to local events in a timely manner. Due to the sheer volume of data generated by end-user devices, as well as the increasing concerns about sharing private information, a new branch of machine learn⁃ ing models, namely federated learning, has emerged from the intersection of artificial intelli⁃ gence and edge computing. In contrast to conventional machine learning methods, federated learning brings the models directly to the device for training, where only the resultant param⁃ eters shall be sent to the edge servers. The local copies of the model on the devices bring along great advantages of eliminating network latency and preserving data privacy. Never⁃ theless, to make federated learning possible, one needs to tackle new challenges that require a fundamental departure from standard methods designed for distributed optimizations. In this paper, we aim to deliver a comprehensive introduction of federated learning. Specifical⁃ ly, we first survey the basis of federated learning, including its learning structure and the distinct features from conventional machine learning models. We then enumerate several critical issues associated with the deployment of federated learning in a wireless network, and show why and how technologies should be jointly integrated to facilitate the full imple⁃ mentation from different perspectives, ranging from algorithmic design, on-device training, to communication resource management. Finally, we conclude by shedding light on some po⁃ tential applications and future trends.\",\"PeriodicalId\":61991,\"journal\":{\"name\":\"ZTE Communications\",\"volume\":\"18 1\",\"pages\":\"2-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZTE Communications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12142/ZTECOM.202002002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZTE Communications","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12142/ZTECOM.202002002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习和无线技术的蓬勃发展为未来的网络提供了一种新的范式,通过从庞大的数据集中进行推理,预计未来的网络将具有更高程度的智能,并能够及时响应本地事件。由于最终用户设备生成的数据量巨大,以及对共享私人信息的日益担忧,人工智能和边缘计算的交叉点出现了一个新的机器学习模型分支,即联合学习。与传统的机器学习方法相比,联合学习将模型直接带到设备中进行训练,其中只有生成的参数才能发送到边缘服务器。该模型在设备上的本地副本带来了消除网络延迟和保护数据隐私的巨大优势。然而,为了使联合学习成为可能,需要应对新的挑战,这些挑战需要从根本上偏离为分布式优化设计的标准方法。在本文中,我们旨在全面介绍联合学习。具体而言,我们首先调查了联合学习的基础,包括其学习结构和与传统机器学习模型的不同特征。然后,我们列举了与在无线网络中部署联合学习相关的几个关键问题,并从不同的角度展示了为什么以及如何联合集成技术,以促进全面实施,从算法设计、设备上培训到通信资源管理。最后,我们总结了一些潜在的应用和未来的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Intelligence at Network Edge:An Overview of Federated Learning
The burgeoning advances in machine learning and wireless technologies are forg⁃ ing a new paradigm for future networks, which are expected to possess higher degrees of in⁃ telligence via the inference from vast dataset and being able to respond to local events in a timely manner. Due to the sheer volume of data generated by end-user devices, as well as the increasing concerns about sharing private information, a new branch of machine learn⁃ ing models, namely federated learning, has emerged from the intersection of artificial intelli⁃ gence and edge computing. In contrast to conventional machine learning methods, federated learning brings the models directly to the device for training, where only the resultant param⁃ eters shall be sent to the edge servers. The local copies of the model on the devices bring along great advantages of eliminating network latency and preserving data privacy. Never⁃ theless, to make federated learning possible, one needs to tackle new challenges that require a fundamental departure from standard methods designed for distributed optimizations. In this paper, we aim to deliver a comprehensive introduction of federated learning. Specifical⁃ ly, we first survey the basis of federated learning, including its learning structure and the distinct features from conventional machine learning models. We then enumerate several critical issues associated with the deployment of federated learning in a wireless network, and show why and how technologies should be jointly integrated to facilitate the full imple⁃ mentation from different perspectives, ranging from algorithmic design, on-device training, to communication resource management. Finally, we conclude by shedding light on some po⁃ tential applications and future trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1320
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信