{"title":"指数逆瑞利分布及其在铁皮涂层重量数据中的应用","authors":"G. S. Rao, S. Mbwambo","doi":"10.1155/2019/7519429","DOIUrl":null,"url":null,"abstract":"This article aims to introduce a generalization of the inverse Rayleigh distribution known as exponentiated inverse Rayleigh distribution (EIRD) which extends a more flexible distribution for modeling life data. Some statistical properties of the EIRD are investigated, such as mode, quantiles, moments, reliability, and hazard function. We describe different methods of parametric estimations of EIRD discussed by using maximum likelihood estimators, percentile based estimators, least squares estimators, and weighted least squares estimators and compare those estimates using extensive numerical simulations. The performances of the proposed methods of estimation are compared by Monte Carlo simulations for both small and large samples. To illustrate these methods in a practical application, a data analysis of real-world coating weights of iron sheets is obtained from the ALAF industry, Tanzania, during January-March, 2018. ALAF industry uses aluminum-zinc galvanization technology in the coating process. This application identifies the EIRD as a better model than other well-known distributions in modeling lifetime data.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7519429","citationCount":"30","resultStr":"{\"title\":\"Exponentiated Inverse Rayleigh Distribution and an Application to Coating Weights of Iron Sheets Data\",\"authors\":\"G. S. Rao, S. Mbwambo\",\"doi\":\"10.1155/2019/7519429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to introduce a generalization of the inverse Rayleigh distribution known as exponentiated inverse Rayleigh distribution (EIRD) which extends a more flexible distribution for modeling life data. Some statistical properties of the EIRD are investigated, such as mode, quantiles, moments, reliability, and hazard function. We describe different methods of parametric estimations of EIRD discussed by using maximum likelihood estimators, percentile based estimators, least squares estimators, and weighted least squares estimators and compare those estimates using extensive numerical simulations. The performances of the proposed methods of estimation are compared by Monte Carlo simulations for both small and large samples. To illustrate these methods in a practical application, a data analysis of real-world coating weights of iron sheets is obtained from the ALAF industry, Tanzania, during January-March, 2018. ALAF industry uses aluminum-zinc galvanization technology in the coating process. This application identifies the EIRD as a better model than other well-known distributions in modeling lifetime data.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/7519429\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/7519429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7519429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exponentiated Inverse Rayleigh Distribution and an Application to Coating Weights of Iron Sheets Data
This article aims to introduce a generalization of the inverse Rayleigh distribution known as exponentiated inverse Rayleigh distribution (EIRD) which extends a more flexible distribution for modeling life data. Some statistical properties of the EIRD are investigated, such as mode, quantiles, moments, reliability, and hazard function. We describe different methods of parametric estimations of EIRD discussed by using maximum likelihood estimators, percentile based estimators, least squares estimators, and weighted least squares estimators and compare those estimates using extensive numerical simulations. The performances of the proposed methods of estimation are compared by Monte Carlo simulations for both small and large samples. To illustrate these methods in a practical application, a data analysis of real-world coating weights of iron sheets is obtained from the ALAF industry, Tanzania, during January-March, 2018. ALAF industry uses aluminum-zinc galvanization technology in the coating process. This application identifies the EIRD as a better model than other well-known distributions in modeling lifetime data.