{"title":"具有恐惧效应和比率依赖HollingIII功能反应的Leslie–Gower型捕食者-被捕食系统的动力学分析","authors":"Hongyu Chen, Chunrui Zhang","doi":"10.15388/namc.2022.27.27932","DOIUrl":null,"url":null,"abstract":"In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent Holling III functional response considering the cost of antipredator defence due to fear. We study the impact of the fear effect on the model, and we find that many interesting dynamical properties of the model can occur when the fear effect is present. Firstly, the relationship between the fear coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally, numerical simulations are carried out to corroborate our theoretical results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dynamic analysis of a Leslie–Gower-type predator–prey system with the fear effect and ratio-dependent Holling III functional response\",\"authors\":\"Hongyu Chen, Chunrui Zhang\",\"doi\":\"10.15388/namc.2022.27.27932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent Holling III functional response considering the cost of antipredator defence due to fear. We study the impact of the fear effect on the model, and we find that many interesting dynamical properties of the model can occur when the fear effect is present. Firstly, the relationship between the fear coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally, numerical simulations are carried out to corroborate our theoretical results.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.27932\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.27932","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamic analysis of a Leslie–Gower-type predator–prey system with the fear effect and ratio-dependent Holling III functional response
In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent Holling III functional response considering the cost of antipredator defence due to fear. We study the impact of the fear effect on the model, and we find that many interesting dynamical properties of the model can occur when the fear effect is present. Firstly, the relationship between the fear coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally, numerical simulations are carried out to corroborate our theoretical results.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.