素数环上的乘性(广义)(α, β)导数的注记

IF 0.4 Q4 MATHEMATICS
N. Rehman, Radwan M. Al-omary, N. Muthana
{"title":"素数环上的乘性(广义)(α, β)导数的注记","authors":"N. Rehman, Radwan M. Al-omary, N. Muthana","doi":"10.2478/amsil-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a prime ring with center Z(R). A map G : R →R is called a multiplicative (generalized) (α, β)-derivation if G(xy)= G(x)α(y)+β(x)g(y) is fulfilled for all x; y ∈ R, where g : R → R is any map (not necessarily derivation) and α; β : R → R are automorphisms. Suppose that G and H are two multiplicative (generalized) (α, β)-derivations associated with the mappings g and h, respectively, on R and α, β are automorphisms of R. The main objective of the present paper is to investigate the following algebraic identities: (i) G(xy) + α(xy) = 0, (ii) G(xy) + α(yx) = 0, (iii) G(xy) + G(x)G(y) = 0, (iv) G(xy) = α(y) ○ H(x) and (v) G(xy) = [α(y), H(x)] for all x, y in an appropriate subset of R.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"266 - 275"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Note on Multiplicative (Generalized) (α, β)-Derivations in Prime Rings\",\"authors\":\"N. Rehman, Radwan M. Al-omary, N. Muthana\",\"doi\":\"10.2478/amsil-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a prime ring with center Z(R). A map G : R →R is called a multiplicative (generalized) (α, β)-derivation if G(xy)= G(x)α(y)+β(x)g(y) is fulfilled for all x; y ∈ R, where g : R → R is any map (not necessarily derivation) and α; β : R → R are automorphisms. Suppose that G and H are two multiplicative (generalized) (α, β)-derivations associated with the mappings g and h, respectively, on R and α, β are automorphisms of R. The main objective of the present paper is to investigate the following algebraic identities: (i) G(xy) + α(xy) = 0, (ii) G(xy) + α(yx) = 0, (iii) G(xy) + G(x)G(y) = 0, (iv) G(xy) = α(y) ○ H(x) and (v) G(xy) = [α(y), H(x)] for all x, y in an appropriate subset of R.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"266 - 275\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设R是一个中心为Z(R)的素环。地图G:R→R称为乘法(广义)(α,β)-导数,如果G(xy)=G(x)α(y)+β(x)G(y)对所有x都成立;y∈R,其中g:R→ R是任何映射(不一定是导数)和α;β:R→ R是自同构。假设G和H分别是R上映射G和H的两个乘法(广义)(α,β)-导子,α,β是R的自同构。本文的主要目的是研究以下代数恒等式:(i)G(xy)+α(xy)=0,(ii)G(xy+α(yx)=0○ 对于R的适当子集中的所有x,y,H(x)和(v)G(xy)=[α(y),H(x)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Multiplicative (Generalized) (α, β)-Derivations in Prime Rings
Abstract Let R be a prime ring with center Z(R). A map G : R →R is called a multiplicative (generalized) (α, β)-derivation if G(xy)= G(x)α(y)+β(x)g(y) is fulfilled for all x; y ∈ R, where g : R → R is any map (not necessarily derivation) and α; β : R → R are automorphisms. Suppose that G and H are two multiplicative (generalized) (α, β)-derivations associated with the mappings g and h, respectively, on R and α, β are automorphisms of R. The main objective of the present paper is to investigate the following algebraic identities: (i) G(xy) + α(xy) = 0, (ii) G(xy) + α(yx) = 0, (iii) G(xy) + G(x)G(y) = 0, (iv) G(xy) = α(y) ○ H(x) and (v) G(xy) = [α(y), H(x)] for all x, y in an appropriate subset of R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信