具有帕累托层某些性质的背包问题的求解算法

Q4 Mathematics
S. V. Chebakov, L. V. Serebryanaya
{"title":"具有帕累托层某些性质的背包问题的求解算法","authors":"S. V. Chebakov, L. V. Serebryanaya","doi":"10.33581/2520-6508-2022-3-54-66","DOIUrl":null,"url":null,"abstract":"An algorithm for solving the knapsack problem based on the proposed multicriteria model has been developed. The structure of admissible subsets is presented for the value of the non-dominance depth of the Pareto layer equal to zero. The sum of the resource of the elements of this layer is greater than or equal to the value of the volume of the knapsack. Based on the structure, the form of the optimal admissible subset with the maximum total value of the weight of its elements is determined. It is shown that at a certain stage the developed algorithm includes the solution of a number of knapsack subtasks. Their knapsack volumes are smaller than in the original problem with input data sets. The definition of the redundancy of the set of initial data and the condition for the existence of redundancy for a given value of the depth of non-dominance of the Pareto layer are introduced.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for solving the knapsack problem with certain properties of Pareto layers\",\"authors\":\"S. V. Chebakov, L. V. Serebryanaya\",\"doi\":\"10.33581/2520-6508-2022-3-54-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for solving the knapsack problem based on the proposed multicriteria model has been developed. The structure of admissible subsets is presented for the value of the non-dominance depth of the Pareto layer equal to zero. The sum of the resource of the elements of this layer is greater than or equal to the value of the volume of the knapsack. Based on the structure, the form of the optimal admissible subset with the maximum total value of the weight of its elements is determined. It is shown that at a certain stage the developed algorithm includes the solution of a number of knapsack subtasks. Their knapsack volumes are smaller than in the original problem with input data sets. The definition of the redundancy of the set of initial data and the condition for the existence of redundancy for a given value of the depth of non-dominance of the Pareto layer are introduced.\",\"PeriodicalId\":36323,\"journal\":{\"name\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-6508-2022-3-54-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2022-3-54-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

基于所提出的多准则模型,提出了一种求解背包问题的算法。给出了Pareto层非优势深度为零时的容许子集结构。这一层元素资源的总和大于或等于背包的体积值。在此基础上,确定了最优容许子集的形式,其元素的总权重最大。结果表明,在一定阶段,所开发的算法包含了许多背包子任务的求解。他们的背包体积比输入数据集的原始问题要小。引入了初始数据集冗余的定义和给定帕累托层非支配深度值时冗余存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm for solving the knapsack problem with certain properties of Pareto layers
An algorithm for solving the knapsack problem based on the proposed multicriteria model has been developed. The structure of admissible subsets is presented for the value of the non-dominance depth of the Pareto layer equal to zero. The sum of the resource of the elements of this layer is greater than or equal to the value of the volume of the knapsack. Based on the structure, the form of the optimal admissible subset with the maximum total value of the weight of its elements is determined. It is shown that at a certain stage the developed algorithm includes the solution of a number of knapsack subtasks. Their knapsack volumes are smaller than in the original problem with input data sets. The definition of the redundancy of the set of initial data and the condition for the existence of redundancy for a given value of the depth of non-dominance of the Pareto layer are introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信