簇流平行坐标:跨子空间跟踪簇

Nils Rodrigues, C. Schulz, Antoine Lhuillier, D. Weiskopf
{"title":"簇流平行坐标:跨子空间跟踪簇","authors":"Nils Rodrigues, C. Schulz, Antoine Lhuillier, D. Weiskopf","doi":"10.20380/GI2020.38","DOIUrl":null,"url":null,"abstract":"We present a novel variant of parallel coordinates plots (PCPs) in which we show clusters in 2D subspaces of multivariate data and emphasize flow between them. We achieve this by duplicating and stacking individual axes vertically. On a high level, our clusterflow layout shows how data points move from one cluster to another in different subspaces. We achieve cluster-based bundling and limit plot growth through the reduction of available vertical space for each duplicated axis. Although we introduce space between clusters, we preserve the readability of intra-cluster correlations by starting and ending with the original slopes from regular PCPs and drawing Hermite spline segments in between. Moreover, our rendering technique enables the visualization of small and large data sets alike. Cluster-flow PCPs can even propagate the uncertainty inherent to fuzzy clustering through the layout and rendering stages of our pipeline. Our layout algorithm is based on A*. It achieves an optimal result with regard to a novel set of cost functions that allow us to arrange axes horizontally (dimension ordering) and vertically (cluster ordering).","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"1 1","pages":"382-392"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cluster-Flow Parallel Coordinates: Tracing Clusters Across Subspaces\",\"authors\":\"Nils Rodrigues, C. Schulz, Antoine Lhuillier, D. Weiskopf\",\"doi\":\"10.20380/GI2020.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel variant of parallel coordinates plots (PCPs) in which we show clusters in 2D subspaces of multivariate data and emphasize flow between them. We achieve this by duplicating and stacking individual axes vertically. On a high level, our clusterflow layout shows how data points move from one cluster to another in different subspaces. We achieve cluster-based bundling and limit plot growth through the reduction of available vertical space for each duplicated axis. Although we introduce space between clusters, we preserve the readability of intra-cluster correlations by starting and ending with the original slopes from regular PCPs and drawing Hermite spline segments in between. Moreover, our rendering technique enables the visualization of small and large data sets alike. Cluster-flow PCPs can even propagate the uncertainty inherent to fuzzy clustering through the layout and rendering stages of our pipeline. Our layout algorithm is based on A*. It achieves an optimal result with regard to a novel set of cost functions that allow us to arrange axes horizontally (dimension ordering) and vertically (cluster ordering).\",\"PeriodicalId\":93493,\"journal\":{\"name\":\"Proceedings. Graphics Interface (Conference)\",\"volume\":\"1 1\",\"pages\":\"382-392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Graphics Interface (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20380/GI2020.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2020.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的平行坐标图(PCP)变体,其中我们在多元数据的2D子空间中显示聚类,并强调它们之间的流动。我们通过垂直复制和堆叠单个轴来实现这一点。在高层次上,我们的集群流布局显示了数据点如何在不同的子空间中从一个集群移动到另一个集群。我们通过减少每个重复轴的可用垂直空间来实现基于聚类的捆绑和限制地块增长。尽管我们引入了聚类之间的空间,但我们通过从规则PCP的原始斜率开始和结束,并在其间绘制埃尔米特样条线段,来保持聚类内相关性的可读性。此外,我们的渲染技术可以实现小型和大型数据集的可视化。集群流PCP甚至可以通过管道的布局和渲染阶段传播模糊集群所固有的不确定性。我们的布局算法基于A*。它实现了关于一组新的成本函数的最佳结果,这些成本函数允许我们水平排列轴(维度排序)和垂直排列轴(聚类排序)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster-Flow Parallel Coordinates: Tracing Clusters Across Subspaces
We present a novel variant of parallel coordinates plots (PCPs) in which we show clusters in 2D subspaces of multivariate data and emphasize flow between them. We achieve this by duplicating and stacking individual axes vertically. On a high level, our clusterflow layout shows how data points move from one cluster to another in different subspaces. We achieve cluster-based bundling and limit plot growth through the reduction of available vertical space for each duplicated axis. Although we introduce space between clusters, we preserve the readability of intra-cluster correlations by starting and ending with the original slopes from regular PCPs and drawing Hermite spline segments in between. Moreover, our rendering technique enables the visualization of small and large data sets alike. Cluster-flow PCPs can even propagate the uncertainty inherent to fuzzy clustering through the layout and rendering stages of our pipeline. Our layout algorithm is based on A*. It achieves an optimal result with regard to a novel set of cost functions that allow us to arrange axes horizontally (dimension ordering) and vertically (cluster ordering).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信