关于用海量数据拟合单索引模型的简短说明

IF 0.7 Q3 STATISTICS & PROBABILITY
R. Jiang, Yexun Peng
{"title":"关于用海量数据拟合单索引模型的简短说明","authors":"R. Jiang, Yexun Peng","doi":"10.1080/24754269.2022.2135807","DOIUrl":null,"url":null,"abstract":"This paper studies the inference problem of index coefficient in single-index models under massive dataset. Analysis of massive dataset is challenging owing to formidable computational costs or memory requirements. A natural method is the averaging divide-and-conquer approach, which splits data into several blocks, obtains the estimators for each block and then aggregates the estimators via averaging. However, there is a restriction on the number of blocks. To overcome this limitation, this paper proposed a computationally efficient method, which only requires an initial estimator and then successively refines the estimator via multiple rounds of aggregations. The proposed estimator achieves the optimal convergence rate without any restriction on the number of blocks. We present both theoretical analysis and experiments to explore the property of the proposed method.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"49 - 60"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on fitting a single-index model with massive data\",\"authors\":\"R. Jiang, Yexun Peng\",\"doi\":\"10.1080/24754269.2022.2135807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the inference problem of index coefficient in single-index models under massive dataset. Analysis of massive dataset is challenging owing to formidable computational costs or memory requirements. A natural method is the averaging divide-and-conquer approach, which splits data into several blocks, obtains the estimators for each block and then aggregates the estimators via averaging. However, there is a restriction on the number of blocks. To overcome this limitation, this paper proposed a computationally efficient method, which only requires an initial estimator and then successively refines the estimator via multiple rounds of aggregations. The proposed estimator achieves the optimal convergence rate without any restriction on the number of blocks. We present both theoretical analysis and experiments to explore the property of the proposed method.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"7 1\",\"pages\":\"49 - 60\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2022.2135807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2135807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了海量数据下单指标模型中指标系数的推断问题。由于巨大的计算成本或内存需求,分析大量数据集是具有挑战性的。一种自然的方法是平均分治法,它将数据分成几个块,得到每个块的估计量,然后通过平均对估计量进行聚合。但是,对块的数量有限制。为了克服这一局限性,本文提出了一种计算效率高的方法,该方法只需要一个初始估计量,然后通过多轮聚合逐步改进估计量。该估计器在不受块数限制的情况下实现了最优收敛速率。我们提出了理论分析和实验来探索所提出的方法的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short note on fitting a single-index model with massive data
This paper studies the inference problem of index coefficient in single-index models under massive dataset. Analysis of massive dataset is challenging owing to formidable computational costs or memory requirements. A natural method is the averaging divide-and-conquer approach, which splits data into several blocks, obtains the estimators for each block and then aggregates the estimators via averaging. However, there is a restriction on the number of blocks. To overcome this limitation, this paper proposed a computationally efficient method, which only requires an initial estimator and then successively refines the estimator via multiple rounds of aggregations. The proposed estimator achieves the optimal convergence rate without any restriction on the number of blocks. We present both theoretical analysis and experiments to explore the property of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信