关于不相交的交叉排列族

IF 1 Q1 MATHEMATICS
Nuttanon Songsuwan, Supida Sengsamak, Nutchapol Jeerawattana, T. Jiarasuksakun, P. Kaemawichanurat
{"title":"关于不相交的交叉排列族","authors":"Nuttanon Songsuwan, Supida Sengsamak, Nutchapol Jeerawattana, T. Jiarasuksakun, P. Kaemawichanurat","doi":"10.47443/dml.2022.110","DOIUrl":null,"url":null,"abstract":"For the positive integers r and n satisfying r ≤ n , let P r,n be the family of partial permutations {{ (1 , x 1 ) , (2 , x 2 ) , . . . , ( r, x r ) } : x 1 , x 2 , . . . , x r are different elements of { 1 , 2 , . . . , n }} . The subfamilies A 1 , A 2 , . . . , A k of P r,n are called cross intersecting if A ∩ B (cid:54) = ∅ for all A ∈ A i and B ∈ A j , where 1 ≤ i (cid:54) = j ≤ k . Also, if A 1 , A 2 , . . . , A k are mutually disjoint, then they are called disjoint cross intersecting subfamilies of P r,n . For the disjoint cross intersecting subfamilies A 1 , A 2 , . . . , A k of P n,n , it follows from the AM-GM inequality that (cid:81) ki =1 |A i | ≤ ( n ! /k ) k . In this paper, we present two proofs of the following statement: (cid:81) ki =1 |A i | = ( n ! /k ) k if and only if n = 3 and k = 2 . permutations; intersecting families; Erd˝os-Ko-Rado Theorem.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Disjoint Cross Intersecting Families of Permutations\",\"authors\":\"Nuttanon Songsuwan, Supida Sengsamak, Nutchapol Jeerawattana, T. Jiarasuksakun, P. Kaemawichanurat\",\"doi\":\"10.47443/dml.2022.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the positive integers r and n satisfying r ≤ n , let P r,n be the family of partial permutations {{ (1 , x 1 ) , (2 , x 2 ) , . . . , ( r, x r ) } : x 1 , x 2 , . . . , x r are different elements of { 1 , 2 , . . . , n }} . The subfamilies A 1 , A 2 , . . . , A k of P r,n are called cross intersecting if A ∩ B (cid:54) = ∅ for all A ∈ A i and B ∈ A j , where 1 ≤ i (cid:54) = j ≤ k . Also, if A 1 , A 2 , . . . , A k are mutually disjoint, then they are called disjoint cross intersecting subfamilies of P r,n . For the disjoint cross intersecting subfamilies A 1 , A 2 , . . . , A k of P n,n , it follows from the AM-GM inequality that (cid:81) ki =1 |A i | ≤ ( n ! /k ) k . In this paper, we present two proofs of the following statement: (cid:81) ki =1 |A i | = ( n ! /k ) k if and only if n = 3 and k = 2 . permutations; intersecting families; Erd˝os-Ko-Rado Theorem.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于满足r≤n的正整数r和n,设P r,n为部分置换族{{(1,x 1), (2, x 2),…, (r, x r)}: x 1, x 2,…, x r是{1,2,…的不同元素。, n}}。亚族a1, a2,…, A∩B (cid:54) =∅对于所有A∈A i, B∈A j,其中1≤i (cid:54) = j≤k,则称A k (P r,n)相交。同样,如果a1 a2…, A, k是互不相交的,则称它们为P, r,n的不相交相交亚族。对于不相交的交叉相交亚族a1, a2,…, A k (pn,n),由AM-GM不等式可得(cid:81) ki =1 |A i |≤(n !/k)本文给出了以下命题的两个证明:(cid:81) ki =1 |A i | = (n !/k) k当且仅当n = 3且k = 2。排列;相交的家庭;Erd˝os-Ko-Rado定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Disjoint Cross Intersecting Families of Permutations
For the positive integers r and n satisfying r ≤ n , let P r,n be the family of partial permutations {{ (1 , x 1 ) , (2 , x 2 ) , . . . , ( r, x r ) } : x 1 , x 2 , . . . , x r are different elements of { 1 , 2 , . . . , n }} . The subfamilies A 1 , A 2 , . . . , A k of P r,n are called cross intersecting if A ∩ B (cid:54) = ∅ for all A ∈ A i and B ∈ A j , where 1 ≤ i (cid:54) = j ≤ k . Also, if A 1 , A 2 , . . . , A k are mutually disjoint, then they are called disjoint cross intersecting subfamilies of P r,n . For the disjoint cross intersecting subfamilies A 1 , A 2 , . . . , A k of P n,n , it follows from the AM-GM inequality that (cid:81) ki =1 |A i | ≤ ( n ! /k ) k . In this paper, we present two proofs of the following statement: (cid:81) ki =1 |A i | = ( n ! /k ) k if and only if n = 3 and k = 2 . permutations; intersecting families; Erd˝os-Ko-Rado Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信