深度有界统计PCFG归纳法作为人类语法习得模型

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lifeng Jin, Lane Schwartz, F. Doshi-Velez, Timothy A. Miller, William Schuler
{"title":"深度有界统计PCFG归纳法作为人类语法习得模型","authors":"Lifeng Jin, Lane Schwartz, F. Doshi-Velez, Timothy A. Miller, William Schuler","doi":"10.1162/coli_a_00399","DOIUrl":null,"url":null,"abstract":"Abstract This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"47 1","pages":"181-216"},"PeriodicalIF":3.7000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Depth-Bounded Statistical PCFG Induction as a Model of Human Grammar Acquisition\",\"authors\":\"Lifeng Jin, Lane Schwartz, F. Doshi-Velez, Timothy A. Miller, William Schuler\",\"doi\":\"10.1162/coli_a_00399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"47 1\",\"pages\":\"181-216\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00399\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00399","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一个简单的PCFG归纳模型,该模型具有固定的类别域,可以预测绝大多数已证实的成分边界,并在儿童导向语音的标准评价数据集上预测出与近一半已证实的成分标签一致的标签。然后,文章探讨了儿童学习者表现出的简单语法和成人学习者表现出的完全递归语法之间的差异可能是工作记忆容量增加的影响,其中浅层语法是递归语法的约束图像。在递归语法的深度特定转换中,将这些内存边界作为中心嵌入限制的实现,会比等效的无界基线产生显著的改进,这表明这种安排可能确实具有学习优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth-Bounded Statistical PCFG Induction as a Model of Human Grammar Acquisition
Abstract This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信