{"title":"模拟锻造过程中非金属夹杂物的演变","authors":"Brandon T. Mackey, T. Siegmund, M. Sangid","doi":"10.1115/1.4057026","DOIUrl":null,"url":null,"abstract":"\n Radial forging of metallic materials requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix-NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component, especially when present near a free surface. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, we contribute to the understanding of processing induced deformation and damage sequences on the onset of stringer formation for both Type 1 and Type 2 alumina NMIs in a Ni-200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. For Type 2 alumina NMIs, embedded in a Ni-200 matrix, the simulations indicate that at temperatures below 800 °C, particle separation dominates the NMI damage sequences, whereas at temperatures between 900 °C - 1000 °C, below an interfacial bond strength of 178 MPa, cavity formation is the dominate damage evolution mechanism, resulting in matrix load shedding and stress concentrations around the NMI.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulating the evolution of non-metallic inclusions during the forging process\",\"authors\":\"Brandon T. Mackey, T. Siegmund, M. Sangid\",\"doi\":\"10.1115/1.4057026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Radial forging of metallic materials requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix-NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component, especially when present near a free surface. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, we contribute to the understanding of processing induced deformation and damage sequences on the onset of stringer formation for both Type 1 and Type 2 alumina NMIs in a Ni-200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. For Type 2 alumina NMIs, embedded in a Ni-200 matrix, the simulations indicate that at temperatures below 800 °C, particle separation dominates the NMI damage sequences, whereas at temperatures between 900 °C - 1000 °C, below an interfacial bond strength of 178 MPa, cavity formation is the dominate damage evolution mechanism, resulting in matrix load shedding and stress concentrations around the NMI.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4057026\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Simulating the evolution of non-metallic inclusions during the forging process
Radial forging of metallic materials requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix-NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component, especially when present near a free surface. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, we contribute to the understanding of processing induced deformation and damage sequences on the onset of stringer formation for both Type 1 and Type 2 alumina NMIs in a Ni-200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. For Type 2 alumina NMIs, embedded in a Ni-200 matrix, the simulations indicate that at temperatures below 800 °C, particle separation dominates the NMI damage sequences, whereas at temperatures between 900 °C - 1000 °C, below an interfacial bond strength of 178 MPa, cavity formation is the dominate damage evolution mechanism, resulting in matrix load shedding and stress concentrations around the NMI.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining