基于卷积神经网络和迁移学习的骨龄评估

Chadaporn Keatmanee, Songphon Klabwong, Kamolphong Osatavanichvong, C. Suchato
{"title":"基于卷积神经网络和迁移学习的骨龄评估","authors":"Chadaporn Keatmanee, Songphon Klabwong, Kamolphong Osatavanichvong, C. Suchato","doi":"10.31524/BKKMEDJ.2019.02.001","DOIUrl":null,"url":null,"abstract":"OBJECTIVES: Bone age assessment is used by clinicians for estimating the maturity of a child’s skeletal system. Traditionally, physicians use template matching methods (GP and/or TW2). Time and accuracy of the evaluation rely on a physician’s experience. Therefore, this research proposes a fully automatic system for bone age assessment with cutting edge artificial Intelligence (AI) technology. \n \nMATERIAL AND METHODS: Convolutional Neural Network (CNNs), a Deep Learning (DL) technique is applied to skeletal bone age prediction combined with transfer learning algorithm. Hence, various kinds of transfer learning algorithms (ResNet-50, Inception-V3, and VGG-16) are investigated in training in the proposed model fed by a number of x-ray images (12,000 image approximately—imbalanced data). \n \nRESULT: VGG-16 shows significant accuracy compared to ResNet-50 and Inception-V3 (mae = 6.53, 20.52 and 43.11 months respectively) \n \nCONCLUSION: The most effective pre-trained layer for CNNs in bone age assessment is VGG-16 according to the accuracy of its prediction. \n \nKeywords: deep learning, convolutional neural network, bone age, growth disorder, maturity estimation, transfer learning \n \nDOI: 10.31524/bkkmedj.2019.02.001","PeriodicalId":92144,"journal":{"name":"The Bangkok medical journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance of Convolutional Neural Networks and Transfer Learning for Skeletal Bone Age Assessment\",\"authors\":\"Chadaporn Keatmanee, Songphon Klabwong, Kamolphong Osatavanichvong, C. Suchato\",\"doi\":\"10.31524/BKKMEDJ.2019.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVES: Bone age assessment is used by clinicians for estimating the maturity of a child’s skeletal system. Traditionally, physicians use template matching methods (GP and/or TW2). Time and accuracy of the evaluation rely on a physician’s experience. Therefore, this research proposes a fully automatic system for bone age assessment with cutting edge artificial Intelligence (AI) technology. \\n \\nMATERIAL AND METHODS: Convolutional Neural Network (CNNs), a Deep Learning (DL) technique is applied to skeletal bone age prediction combined with transfer learning algorithm. Hence, various kinds of transfer learning algorithms (ResNet-50, Inception-V3, and VGG-16) are investigated in training in the proposed model fed by a number of x-ray images (12,000 image approximately—imbalanced data). \\n \\nRESULT: VGG-16 shows significant accuracy compared to ResNet-50 and Inception-V3 (mae = 6.53, 20.52 and 43.11 months respectively) \\n \\nCONCLUSION: The most effective pre-trained layer for CNNs in bone age assessment is VGG-16 according to the accuracy of its prediction. \\n \\nKeywords: deep learning, convolutional neural network, bone age, growth disorder, maturity estimation, transfer learning \\n \\nDOI: 10.31524/bkkmedj.2019.02.001\",\"PeriodicalId\":92144,\"journal\":{\"name\":\"The Bangkok medical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bangkok medical journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31524/BKKMEDJ.2019.02.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bangkok medical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31524/BKKMEDJ.2019.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目的:骨龄评估被临床医生用来评估儿童骨骼系统的成熟度。传统上,医生使用模板匹配方法(GP和/或TW2)。评估的时间和准确性依赖于医生的经验。因此,本研究提出了一个采用尖端人工智能(AI)技术的全自动骨龄评估系统。材料与方法:将深度学习(DL)技术卷积神经网络(cnn)与迁移学习算法相结合,应用于骨骼骨龄预测。因此,各种迁移学习算法(ResNet-50、Inception-V3和VGG-16)在由大量x射线图像(12,000张图像近似不平衡数据)提供的模型中进行训练研究。结果:与ResNet-50和Inception-V3相比,VGG-16具有显著的准确率(mae分别为6.53、20.52和43.11个月)。结论:从预测准确率来看,VGG-16是cnn评估骨龄最有效的预训练层。关键词:深度学习,卷积神经网络,骨龄,生长障碍,成熟度估计,迁移学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Convolutional Neural Networks and Transfer Learning for Skeletal Bone Age Assessment
OBJECTIVES: Bone age assessment is used by clinicians for estimating the maturity of a child’s skeletal system. Traditionally, physicians use template matching methods (GP and/or TW2). Time and accuracy of the evaluation rely on a physician’s experience. Therefore, this research proposes a fully automatic system for bone age assessment with cutting edge artificial Intelligence (AI) technology. MATERIAL AND METHODS: Convolutional Neural Network (CNNs), a Deep Learning (DL) technique is applied to skeletal bone age prediction combined with transfer learning algorithm. Hence, various kinds of transfer learning algorithms (ResNet-50, Inception-V3, and VGG-16) are investigated in training in the proposed model fed by a number of x-ray images (12,000 image approximately—imbalanced data). RESULT: VGG-16 shows significant accuracy compared to ResNet-50 and Inception-V3 (mae = 6.53, 20.52 and 43.11 months respectively) CONCLUSION: The most effective pre-trained layer for CNNs in bone age assessment is VGG-16 according to the accuracy of its prediction. Keywords: deep learning, convolutional neural network, bone age, growth disorder, maturity estimation, transfer learning DOI: 10.31524/bkkmedj.2019.02.001
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信