Rafael Rodríguez-Sánchez, Adrián Castelló, Sandra Catalán, Francisco D. Igual, E. S. Quintana‐Ortí
{"title":"在多核处理器上使用可延展BLAS的任务并行应用程序中嵌套并行的经验","authors":"Rafael Rodríguez-Sánchez, Adrián Castelló, Sandra Catalán, Francisco D. Igual, E. S. Quintana‐Ortí","doi":"10.1177/10943420231157653","DOIUrl":null,"url":null,"abstract":"Malleability is defined as the ability to vary the degree of parallelism at runtime, and is regarded as a means to improve core occupation on state-of-the-art multicore processors tshat contain tens of computational cores per socket. This property is especially interesting for applications consisting of irregular workloads and/or divergent executions paths. The integration of malleability in high-performance instances of the Basic Linear Algebra Subprograms (BLAS) is currently nonexistent, and, in consequence, applications relying on these computational kernels cannot benefit from this capability. In response to this scenario, in this paper we demonstrate that significant performance benefits can be gathered via the exploitation of malleability in a framework designed to implement portable and high-performance BLAS-like operations. For this purpose, we integrate malleability within the BLIS library, and provide an experimental evaluation of the result on three different practical use cases.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiences with nested parallelism in task-parallel applications using malleable BLAS on multicore processors\",\"authors\":\"Rafael Rodríguez-Sánchez, Adrián Castelló, Sandra Catalán, Francisco D. Igual, E. S. Quintana‐Ortí\",\"doi\":\"10.1177/10943420231157653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malleability is defined as the ability to vary the degree of parallelism at runtime, and is regarded as a means to improve core occupation on state-of-the-art multicore processors tshat contain tens of computational cores per socket. This property is especially interesting for applications consisting of irregular workloads and/or divergent executions paths. The integration of malleability in high-performance instances of the Basic Linear Algebra Subprograms (BLAS) is currently nonexistent, and, in consequence, applications relying on these computational kernels cannot benefit from this capability. In response to this scenario, in this paper we demonstrate that significant performance benefits can be gathered via the exploitation of malleability in a framework designed to implement portable and high-performance BLAS-like operations. For this purpose, we integrate malleability within the BLIS library, and provide an experimental evaluation of the result on three different practical use cases.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420231157653\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231157653","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Experiences with nested parallelism in task-parallel applications using malleable BLAS on multicore processors
Malleability is defined as the ability to vary the degree of parallelism at runtime, and is regarded as a means to improve core occupation on state-of-the-art multicore processors tshat contain tens of computational cores per socket. This property is especially interesting for applications consisting of irregular workloads and/or divergent executions paths. The integration of malleability in high-performance instances of the Basic Linear Algebra Subprograms (BLAS) is currently nonexistent, and, in consequence, applications relying on these computational kernels cannot benefit from this capability. In response to this scenario, in this paper we demonstrate that significant performance benefits can be gathered via the exploitation of malleability in a framework designed to implement portable and high-performance BLAS-like operations. For this purpose, we integrate malleability within the BLIS library, and provide an experimental evaluation of the result on three different practical use cases.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.