{"title":"合成气体火焰的旋流器几何效应(dh/do比):第1部分:燃烧和排放特性","authors":"Harun Yilmaz, Omer Cam, I. Yilmaz","doi":"10.6001/energetika.v67i1.4535","DOIUrl":null,"url":null,"abstract":"Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swirler geometry effects (dh/do ratio) on synthetic gas flames: Part 1: Combustion and emission characteristics\",\"authors\":\"Harun Yilmaz, Omer Cam, I. Yilmaz\",\"doi\":\"10.6001/energetika.v67i1.4535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.\",\"PeriodicalId\":35639,\"journal\":{\"name\":\"Energetika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6001/energetika.v67i1.4535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v67i1.4535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Swirler geometry effects (dh/do ratio) on synthetic gas flames: Part 1: Combustion and emission characteristics
Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.
EnergetikaEnergy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍:
The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimization, target systems, environmental impacts of power engineering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metrology, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are reviewed. Information is presented on the defended theses, various conferences, reviews, etc.