低盐含蜡碳酸盐岩原油低盐注入自吸试验

F. Hidayat, T. Erfando, Borry Frima Maulana
{"title":"低盐含蜡碳酸盐岩原油低盐注入自吸试验","authors":"F. Hidayat, T. Erfando, Borry Frima Maulana","doi":"10.25299/JEEE.2018.VOL7(2).2215","DOIUrl":null,"url":null,"abstract":"Low salinity waterflooding (LSW) is categorized as one of emerging EOR technologies. It is done by injecting water with different salt composition and/or concentration. The research has been carried out for both sandstone and carbonate with the results looks promising. However, most of this research still concentrated in the north sea, middle east and North America region. This article discusses the applicability of low salinity waterflooding methodology in Indonesia. Spontaneous imbibition test is carried out to observe the recovery gain from a various combination of concentration and composition of the injected brine. The change of pH of the brine is also examined in order to confirm the pH effect mechanism. Three different concentration of brine (500 ppm, 5.000 ppm, and 10.000 ppm), three different brine composition (NaCl, CaCl2, and MgCl2) and high paraffinic crude oil are used as the fluid sample. It is found that the increased oil recovery is significant at a salinity of 10,000 ppm for MgCl2 and 5,000 ppm for NaCl ions. While the lowest recovery was shown by the test at a salinity of 500 ppm","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spontaneous Imbibition Test of Low Salinity Injection at Low Saline Waxy Crude Carbonate\",\"authors\":\"F. Hidayat, T. Erfando, Borry Frima Maulana\",\"doi\":\"10.25299/JEEE.2018.VOL7(2).2215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low salinity waterflooding (LSW) is categorized as one of emerging EOR technologies. It is done by injecting water with different salt composition and/or concentration. The research has been carried out for both sandstone and carbonate with the results looks promising. However, most of this research still concentrated in the north sea, middle east and North America region. This article discusses the applicability of low salinity waterflooding methodology in Indonesia. Spontaneous imbibition test is carried out to observe the recovery gain from a various combination of concentration and composition of the injected brine. The change of pH of the brine is also examined in order to confirm the pH effect mechanism. Three different concentration of brine (500 ppm, 5.000 ppm, and 10.000 ppm), three different brine composition (NaCl, CaCl2, and MgCl2) and high paraffinic crude oil are used as the fluid sample. It is found that the increased oil recovery is significant at a salinity of 10,000 ppm for MgCl2 and 5,000 ppm for NaCl ions. While the lowest recovery was shown by the test at a salinity of 500 ppm\",\"PeriodicalId\":33635,\"journal\":{\"name\":\"Journal of Earth Energy Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Energy Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25299/JEEE.2018.VOL7(2).2215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/JEEE.2018.VOL7(2).2215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

低矿化度水驱(LSW)是新兴的提高采收率技术之一。它是通过注入不同盐成分和/或浓度的水来完成的。在砂岩和碳酸盐中都进行了研究,结果看起来很有希望。然而,这方面的研究大多集中在北海、中东和北美地区。本文讨论了低矿化度水驱方法在印度尼西亚的适用性。进行了自吸试验,观察了注入盐水的不同浓度和组成组合的采收率。同时还考察了卤水pH值的变化,以确定pH值的作用机理。采用3种不同浓度的卤水(500ppm、5.000 ppm和10.000 ppm)、3种不同的卤水成分(NaCl、CaCl2和MgCl2)和高石蜡原油作为流体样品。结果表明,当MgCl2浓度为10,000 ppm、NaCl浓度为5,000 ppm时,采收率显著提高。而在盐度为500ppm时的测试显示,采收率最低
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spontaneous Imbibition Test of Low Salinity Injection at Low Saline Waxy Crude Carbonate
Low salinity waterflooding (LSW) is categorized as one of emerging EOR technologies. It is done by injecting water with different salt composition and/or concentration. The research has been carried out for both sandstone and carbonate with the results looks promising. However, most of this research still concentrated in the north sea, middle east and North America region. This article discusses the applicability of low salinity waterflooding methodology in Indonesia. Spontaneous imbibition test is carried out to observe the recovery gain from a various combination of concentration and composition of the injected brine. The change of pH of the brine is also examined in order to confirm the pH effect mechanism. Three different concentration of brine (500 ppm, 5.000 ppm, and 10.000 ppm), three different brine composition (NaCl, CaCl2, and MgCl2) and high paraffinic crude oil are used as the fluid sample. It is found that the increased oil recovery is significant at a salinity of 10,000 ppm for MgCl2 and 5,000 ppm for NaCl ions. While the lowest recovery was shown by the test at a salinity of 500 ppm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信