{"title":"硒基硫系玻璃的高场导电性研究","authors":"N. Yaduvanshi","doi":"10.15251/jobm.2022.143.129","DOIUrl":null,"url":null,"abstract":"The present work reports the study of high field conduction in thin films of Se90Ge10-x Inx (x=2,6) because high field conduction in chalcogenide glasses is affected by the presence of localised states at the band edges as well as the defect states present in the mobility gap.To measure the density of states in these thin films , space charge limited conduction technique is used. I-V characteristics have been measured at various fixed temperatures. An ohmic behaviour is observed at low electric fields upto 102V/cm. Superohmic behaviour is observed at high electric fields (103 -104 V/cm).High field conduction theory of space charge limited conduction for uniform distribution of localised states in the mobility gap fits well with the experimental data.Using this theory, the density of defect states near Fermi level is calculated for all glassy alloys.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of High field conduction in Se based Chalcogenide glasses\",\"authors\":\"N. Yaduvanshi\",\"doi\":\"10.15251/jobm.2022.143.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work reports the study of high field conduction in thin films of Se90Ge10-x Inx (x=2,6) because high field conduction in chalcogenide glasses is affected by the presence of localised states at the band edges as well as the defect states present in the mobility gap.To measure the density of states in these thin films , space charge limited conduction technique is used. I-V characteristics have been measured at various fixed temperatures. An ohmic behaviour is observed at low electric fields upto 102V/cm. Superohmic behaviour is observed at high electric fields (103 -104 V/cm).High field conduction theory of space charge limited conduction for uniform distribution of localised states in the mobility gap fits well with the experimental data.Using this theory, the density of defect states near Fermi level is calculated for all glassy alloys.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jobm.2022.143.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2022.143.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of High field conduction in Se based Chalcogenide glasses
The present work reports the study of high field conduction in thin films of Se90Ge10-x Inx (x=2,6) because high field conduction in chalcogenide glasses is affected by the presence of localised states at the band edges as well as the defect states present in the mobility gap.To measure the density of states in these thin films , space charge limited conduction technique is used. I-V characteristics have been measured at various fixed temperatures. An ohmic behaviour is observed at low electric fields upto 102V/cm. Superohmic behaviour is observed at high electric fields (103 -104 V/cm).High field conduction theory of space charge limited conduction for uniform distribution of localised states in the mobility gap fits well with the experimental data.Using this theory, the density of defect states near Fermi level is calculated for all glassy alloys.