碳化硅超声振动辅助磨削中超声振动对上下磨削加工质量的影响

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING
Hao Li, Tao Chen, Hongbo Li, Yiwen Zhang
{"title":"碳化硅超声振动辅助磨削中超声振动对上下磨削加工质量的影响","authors":"Hao Li, Tao Chen, Hongbo Li, Yiwen Zhang","doi":"10.1080/10910344.2023.2194958","DOIUrl":null,"url":null,"abstract":"Abstract Conventional surface grinding can be divided into up grinding and down grinding according to rotation direction of spindle. Nevertheless, the effects and differences of ultrasonic vibration on the two machining methods have been less reported. The influence of ultrasonic vibration amplitude on cutting force, surface roughness and surface topography were investigated in this paper by conducting tangential and radial ultrasonic vibration assisted down/up grinding comparison experiments on SiC. The results showed that the grinding force of down grinding was less than that of up grinding in conventional grinding, while the surface roughness was greater than that of up grinding. The grinding forces of both down grinding and up grinding were reduced to different ratios after applying different ultrasonic vibration, while the surface roughness increased. The grinding force of up grinding decreased and then increased with the increase of amplitude, while the grinding force of down grinding kept decreasing and the surface roughness decreased. The reasons for the differences in cutting forces and surface quality between the two grinding methods after the application of ultrasonic vibration are discussed. By observing the surface morphology, the percentage of ductile area on the machined surface decreases and then increases with the increase of amplitude.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of ultrasonic vibration on machining quality of down/up grinding in ultrasonic vibration assisted grinding of silicon carbide\",\"authors\":\"Hao Li, Tao Chen, Hongbo Li, Yiwen Zhang\",\"doi\":\"10.1080/10910344.2023.2194958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Conventional surface grinding can be divided into up grinding and down grinding according to rotation direction of spindle. Nevertheless, the effects and differences of ultrasonic vibration on the two machining methods have been less reported. The influence of ultrasonic vibration amplitude on cutting force, surface roughness and surface topography were investigated in this paper by conducting tangential and radial ultrasonic vibration assisted down/up grinding comparison experiments on SiC. The results showed that the grinding force of down grinding was less than that of up grinding in conventional grinding, while the surface roughness was greater than that of up grinding. The grinding forces of both down grinding and up grinding were reduced to different ratios after applying different ultrasonic vibration, while the surface roughness increased. The grinding force of up grinding decreased and then increased with the increase of amplitude, while the grinding force of down grinding kept decreasing and the surface roughness decreased. The reasons for the differences in cutting forces and surface quality between the two grinding methods after the application of ultrasonic vibration are discussed. By observing the surface morphology, the percentage of ductile area on the machined surface decreases and then increases with the increase of amplitude.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2023.2194958\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2194958","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

摘要

传统的平面磨削按主轴旋转方向可分为上磨削和下磨削。然而,超声振动对两种加工方法的影响和差异报道较少。通过对SiC材料进行切向和径向超声振动辅助上下磨削对比实验,研究了超声振动幅值对切削力、表面粗糙度和表面形貌的影响。结果表明:在常规磨削中,下磨削的磨削力小于上磨削,而表面粗糙度大于上磨削。施加不同的超声振动后,下磨和上磨的磨削力都有不同比例的减小,表面粗糙度增大。随着振幅的增大,上磨的磨削力先减小后增大,下磨的磨削力不断减小,表面粗糙度减小。讨论了应用超声振动后两种磨削方法在切削力和表面质量上存在差异的原因。通过观察表面形貌可知,随振幅的增大,加工表面的韧性面积百分比先减小后增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of ultrasonic vibration on machining quality of down/up grinding in ultrasonic vibration assisted grinding of silicon carbide
Abstract Conventional surface grinding can be divided into up grinding and down grinding according to rotation direction of spindle. Nevertheless, the effects and differences of ultrasonic vibration on the two machining methods have been less reported. The influence of ultrasonic vibration amplitude on cutting force, surface roughness and surface topography were investigated in this paper by conducting tangential and radial ultrasonic vibration assisted down/up grinding comparison experiments on SiC. The results showed that the grinding force of down grinding was less than that of up grinding in conventional grinding, while the surface roughness was greater than that of up grinding. The grinding forces of both down grinding and up grinding were reduced to different ratios after applying different ultrasonic vibration, while the surface roughness increased. The grinding force of up grinding decreased and then increased with the increase of amplitude, while the grinding force of down grinding kept decreasing and the surface roughness decreased. The reasons for the differences in cutting forces and surface quality between the two grinding methods after the application of ultrasonic vibration are discussed. By observing the surface morphology, the percentage of ductile area on the machined surface decreases and then increases with the increase of amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信