接头参数对自开双基复合材料性能的影响

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Charles White, Jordan A. Firth, M. Pankow
{"title":"接头参数对自开双基复合材料性能的影响","authors":"Charles White, Jordan A. Firth, M. Pankow","doi":"10.2514/1.a35383","DOIUrl":null,"url":null,"abstract":"Origami-based structures have expanded in recent years due to new mathematical formulations along with materials that can achieve the bending requirements, often in the form of composites. While current methods of manufacturing can produce complex structures, they lack the ability to scale efficiently. A novel manufacturing technique is discussed in this work that allows for a simpler and lower cost fabrication that can scale to larger structures through robotic deposition. Samples made from this technique are investigated to understand the mechanical bending performance and effect on the tensile properties. Results show an orientation-dependent response for the material with the 45° samples having a direct impact on the tensile response. However, their bending response proved to be stiffer compared to the [Formula: see text] samples, holding more consistent bend radii. Joint stacking was also investigated, where discrete layers were not bonded together and showed an increase in force required to bend compared to the completely bonded samples. The results provide insight into how integrated composite hinges can perform in complex structures. The advancement of composite origami technology additionally works to reduce the overall number or parts and fasteners that are needed to achieve detailed deployable structures.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Joint Parameters on Performance of Self-Opening Dual-Matrix Composites\",\"authors\":\"Charles White, Jordan A. Firth, M. Pankow\",\"doi\":\"10.2514/1.a35383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Origami-based structures have expanded in recent years due to new mathematical formulations along with materials that can achieve the bending requirements, often in the form of composites. While current methods of manufacturing can produce complex structures, they lack the ability to scale efficiently. A novel manufacturing technique is discussed in this work that allows for a simpler and lower cost fabrication that can scale to larger structures through robotic deposition. Samples made from this technique are investigated to understand the mechanical bending performance and effect on the tensile properties. Results show an orientation-dependent response for the material with the 45° samples having a direct impact on the tensile response. However, their bending response proved to be stiffer compared to the [Formula: see text] samples, holding more consistent bend radii. Joint stacking was also investigated, where discrete layers were not bonded together and showed an increase in force required to bend compared to the completely bonded samples. The results provide insight into how integrated composite hinges can perform in complex structures. The advancement of composite origami technology additionally works to reduce the overall number or parts and fasteners that are needed to achieve detailed deployable structures.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35383\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于新的数学公式以及可以达到弯曲要求的材料(通常以复合材料的形式),折纸结构得到了扩展。虽然目前的制造方法可以生产复杂的结构,但它们缺乏有效扩展的能力。在这项工作中讨论了一种新的制造技术,该技术允许更简单,更低成本的制造,可以通过机器人沉积扩展到更大的结构。对用这种方法制成的样品进行了研究,以了解其机械弯曲性能及其对拉伸性能的影响。结果表明,材料的取向相关响应与45°样品对拉伸响应有直接影响。然而,与[公式:见文本]样本相比,它们的弯曲响应被证明是更硬的,保持更一致的弯曲半径。还研究了接缝堆叠,其中离散层没有粘合在一起,并且与完全粘合的样品相比,弯曲所需的力增加。结果提供了深入了解如何集成复合铰链可以执行复杂的结构。复合折纸技术的进步还减少了实现详细可展开结构所需的零件和紧固件的总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Joint Parameters on Performance of Self-Opening Dual-Matrix Composites
Origami-based structures have expanded in recent years due to new mathematical formulations along with materials that can achieve the bending requirements, often in the form of composites. While current methods of manufacturing can produce complex structures, they lack the ability to scale efficiently. A novel manufacturing technique is discussed in this work that allows for a simpler and lower cost fabrication that can scale to larger structures through robotic deposition. Samples made from this technique are investigated to understand the mechanical bending performance and effect on the tensile properties. Results show an orientation-dependent response for the material with the 45° samples having a direct impact on the tensile response. However, their bending response proved to be stiffer compared to the [Formula: see text] samples, holding more consistent bend radii. Joint stacking was also investigated, where discrete layers were not bonded together and showed an increase in force required to bend compared to the completely bonded samples. The results provide insight into how integrated composite hinges can perform in complex structures. The advancement of composite origami technology additionally works to reduce the overall number or parts and fasteners that are needed to achieve detailed deployable structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信