TIO2/Ag/rGO纳米复合材料的光催化活性

IF 0.3 Q4 PHYSICS, MULTIDISCIPLINARY
T. Serikov, P. Zhanbirbayeva, A. Baltabekov, A.B. Kuanyshbekova
{"title":"TIO2/Ag/rGO纳米复合材料的光催化活性","authors":"T. Serikov, P. Zhanbirbayeva, A. Baltabekov, A.B. Kuanyshbekova","doi":"10.31489/2022ph4/14-21","DOIUrl":null,"url":null,"abstract":"The paper presents the results of a study of the photocatalytic activity of films formed by titanium dioxide nanorods doped with silver nanoparticles and reduced graphene oxide. The obtained nanocomposite materials were studied by optical spectroscopy, scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The photocatalytic activity of the samples was evaluated by generating a photocurrent when the surface was illuminated by a modulated light source of a xenon lamp. In addition, the photocatalytic activity of the samples was evaluated by the degradation of the methylene blue dye, which is a model. It was found that the introduction of silver nanoparticles and reduced graphene oxide into the pores of films made of titanium dioxide nanorods leads to an increase in the spectral sensitivity of the sample in the region of 400-500 nm. The increased sensitivity of the sample to visible light leads to an increase in photocurrent generation and is 2.3 times higher than that of the original sample. Degradation of the methylene blue dye after 100 minutes of irradiation in the presence of a TiO2/Ag/rGO sample was 19 %. This is 3 times higher than in TiO2 nanorods films and 2.3 times higher than TiO2/Ag films. The results of the conducted studies have shown that the improvement of photocatalytic activity is associated with a decrease in film resistance, an expansion of spectral sensitivity and an increase in the surface area of the nanorods.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic activity of the TIO2/Ag/rGO nanocomposite\",\"authors\":\"T. Serikov, P. Zhanbirbayeva, A. Baltabekov, A.B. Kuanyshbekova\",\"doi\":\"10.31489/2022ph4/14-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of a study of the photocatalytic activity of films formed by titanium dioxide nanorods doped with silver nanoparticles and reduced graphene oxide. The obtained nanocomposite materials were studied by optical spectroscopy, scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The photocatalytic activity of the samples was evaluated by generating a photocurrent when the surface was illuminated by a modulated light source of a xenon lamp. In addition, the photocatalytic activity of the samples was evaluated by the degradation of the methylene blue dye, which is a model. It was found that the introduction of silver nanoparticles and reduced graphene oxide into the pores of films made of titanium dioxide nanorods leads to an increase in the spectral sensitivity of the sample in the region of 400-500 nm. The increased sensitivity of the sample to visible light leads to an increase in photocurrent generation and is 2.3 times higher than that of the original sample. Degradation of the methylene blue dye after 100 minutes of irradiation in the presence of a TiO2/Ag/rGO sample was 19 %. This is 3 times higher than in TiO2 nanorods films and 2.3 times higher than TiO2/Ag films. The results of the conducted studies have shown that the improvement of photocatalytic activity is associated with a decrease in film resistance, an expansion of spectral sensitivity and an increase in the surface area of the nanorods.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022ph4/14-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022ph4/14-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了由掺杂银纳米颗粒的二氧化钛纳米棒和还原的氧化石墨烯形成的膜的光催化活性的研究结果。通过光学光谱、扫描电子显微镜、X射线衍射仪和拉曼光谱对所获得的纳米复合材料进行了研究。通过在由氙灯的调制光源照射表面时产生光电流来评估样品的光催化活性。此外,通过亚甲基蓝染料的降解来评估样品的光催化活性,这是一个模型。研究发现,将银纳米颗粒和还原的氧化石墨烯引入由二氧化钛纳米棒制成的膜的孔中导致样品在400-500nm范围内的光谱灵敏度增加。样品对可见光的灵敏度增加导致光电流产生的增加,并且是原始样品的2.3倍。在TiO2/Ag/rGO样品存在下照射100分钟后,亚甲蓝染料的降解率为19%。这比TiO2纳米棒膜高3倍,比TiO2/Ag膜高2.3倍。所进行的研究结果表明,光催化活性的提高与薄膜电阻的降低、光谱灵敏度的扩大和纳米棒表面积的增加有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic activity of the TIO2/Ag/rGO nanocomposite
The paper presents the results of a study of the photocatalytic activity of films formed by titanium dioxide nanorods doped with silver nanoparticles and reduced graphene oxide. The obtained nanocomposite materials were studied by optical spectroscopy, scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The photocatalytic activity of the samples was evaluated by generating a photocurrent when the surface was illuminated by a modulated light source of a xenon lamp. In addition, the photocatalytic activity of the samples was evaluated by the degradation of the methylene blue dye, which is a model. It was found that the introduction of silver nanoparticles and reduced graphene oxide into the pores of films made of titanium dioxide nanorods leads to an increase in the spectral sensitivity of the sample in the region of 400-500 nm. The increased sensitivity of the sample to visible light leads to an increase in photocurrent generation and is 2.3 times higher than that of the original sample. Degradation of the methylene blue dye after 100 minutes of irradiation in the presence of a TiO2/Ag/rGO sample was 19 %. This is 3 times higher than in TiO2 nanorods films and 2.3 times higher than TiO2/Ag films. The results of the conducted studies have shown that the improvement of photocatalytic activity is associated with a decrease in film resistance, an expansion of spectral sensitivity and an increase in the surface area of the nanorods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信