有限群,最小基和交点数

IF 1.1 Q1 MATHEMATICS
Timothy C. Burness, Martino Garonzi, A. Lucchini
{"title":"有限群,最小基和交点数","authors":"Timothy C. Burness, Martino Garonzi, A. Lucchini","doi":"10.1112/tlm3.12040","DOIUrl":null,"url":null,"abstract":"Let G$G$ be a finite group and recall that the Frattini subgroup Frat(G)${\\rm Frat}(G)$ is the intersection of all the maximal subgroups of G$G$ . In this paper, we investigate the intersection number of G$G$ , denoted α(G)$\\alpha (G)$ , which is the minimal number of maximal subgroups whose intersection coincides with Frat(G)${\\rm Frat}(G)$ . In earlier work, we studied α(G)$\\alpha (G)$ in the special case where G$G$ is simple and here we extend the analysis to almost simple groups. In particular, we prove that α(G)⩽4$\\alpha (G) \\leqslant 4$ for every almost simple group G$G$ , which is best possible. We also establish new results on the intersection number of arbitrary finite groups, obtaining upper bounds that are defined in terms of the chief factors of the group. Finally, for almost simple groups G$G$ we present best possible bounds on a related invariant β(G)$\\beta (G)$ , which we call the base number of G$G$ . In this setting, β(G)$\\beta (G)$ is the minimal base size of G$G$ as we range over all faithful primitive actions of the group and we prove that the bound β(G)⩽4$\\beta (G) \\leqslant 4$ is optimal. Along the way, we study bases for the primitive action of the symmetric group Sab$S_{ab}$ on the set of partitions of [1,ab]$[1,ab]$ into a$a$ parts of size b$b$ , determining the exact base size for a⩾b$a \\geqslant b$ . This extends earlier work of Benbenishty, Cohen and Niemeyer.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Finite groups, minimal bases and the intersection number\",\"authors\":\"Timothy C. Burness, Martino Garonzi, A. Lucchini\",\"doi\":\"10.1112/tlm3.12040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G$G$ be a finite group and recall that the Frattini subgroup Frat(G)${\\\\rm Frat}(G)$ is the intersection of all the maximal subgroups of G$G$ . In this paper, we investigate the intersection number of G$G$ , denoted α(G)$\\\\alpha (G)$ , which is the minimal number of maximal subgroups whose intersection coincides with Frat(G)${\\\\rm Frat}(G)$ . In earlier work, we studied α(G)$\\\\alpha (G)$ in the special case where G$G$ is simple and here we extend the analysis to almost simple groups. In particular, we prove that α(G)⩽4$\\\\alpha (G) \\\\leqslant 4$ for every almost simple group G$G$ , which is best possible. We also establish new results on the intersection number of arbitrary finite groups, obtaining upper bounds that are defined in terms of the chief factors of the group. Finally, for almost simple groups G$G$ we present best possible bounds on a related invariant β(G)$\\\\beta (G)$ , which we call the base number of G$G$ . In this setting, β(G)$\\\\beta (G)$ is the minimal base size of G$G$ as we range over all faithful primitive actions of the group and we prove that the bound β(G)⩽4$\\\\beta (G) \\\\leqslant 4$ is optimal. Along the way, we study bases for the primitive action of the symmetric group Sab$S_{ab}$ on the set of partitions of [1,ab]$[1,ab]$ into a$a$ parts of size b$b$ , determining the exact base size for a⩾b$a \\\\geqslant b$ . This extends earlier work of Benbenishty, Cohen and Niemeyer.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设G$G$ 是一个有限群,回想一下Frattini子群Frat(G)${\rm Frat}(G)$ 是G的所有极大子群的交集$G$ . 本文研究了G的交点数$G$ ,记为α(G)$\alpha (G)$ ,即相交于Frat(G)的最大子群的最小个数。${\rm Frat}(G)$ . 在早期的工作中,我们研究了α(G)$\alpha (G)$ 在特殊情况下G$G$ 很简单,这里我们将分析扩展到几乎简单的组。特别地,我们证明了α(G)≥4$\alpha (G) \leqslant 4$ 对于每一个几乎简单的群G$G$ 这是最好的选择。我们还建立了关于任意有限群的交点数的新结果,得到了由群的主因子定义的上界。最后,对于几乎单群G$G$ 我们给出了相关不变量β(G)的最佳可能界。$\beta (G)$ 我们称之为G的底数$G$ . 在这种情况下,β(G)$\beta (G)$ G的最小基础尺寸是多少$G$ 当我们对群的所有忠实的原始作用进行范围变换时,我们证明了界β(G)≥4$\beta (G) \leqslant 4$ 是最优的。在此过程中,我们研究了对称群Sab的基元作用$S_{ab}$ 在[1,ab]的分区集合上$[1,ab]$ 变成$a$ 尺寸为b的部件$b$ 确定a或大于或等于a或大于或等于b的确切基数大小$a \geqslant b$ . 这延伸了Benbenishty, Cohen和Niemeyer早期的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups, minimal bases and the intersection number
Let G$G$ be a finite group and recall that the Frattini subgroup Frat(G)${\rm Frat}(G)$ is the intersection of all the maximal subgroups of G$G$ . In this paper, we investigate the intersection number of G$G$ , denoted α(G)$\alpha (G)$ , which is the minimal number of maximal subgroups whose intersection coincides with Frat(G)${\rm Frat}(G)$ . In earlier work, we studied α(G)$\alpha (G)$ in the special case where G$G$ is simple and here we extend the analysis to almost simple groups. In particular, we prove that α(G)⩽4$\alpha (G) \leqslant 4$ for every almost simple group G$G$ , which is best possible. We also establish new results on the intersection number of arbitrary finite groups, obtaining upper bounds that are defined in terms of the chief factors of the group. Finally, for almost simple groups G$G$ we present best possible bounds on a related invariant β(G)$\beta (G)$ , which we call the base number of G$G$ . In this setting, β(G)$\beta (G)$ is the minimal base size of G$G$ as we range over all faithful primitive actions of the group and we prove that the bound β(G)⩽4$\beta (G) \leqslant 4$ is optimal. Along the way, we study bases for the primitive action of the symmetric group Sab$S_{ab}$ on the set of partitions of [1,ab]$[1,ab]$ into a$a$ parts of size b$b$ , determining the exact base size for a⩾b$a \geqslant b$ . This extends earlier work of Benbenishty, Cohen and Niemeyer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信