{"title":"壁式防波堤的水动力性能——一种物理和数值方法","authors":"K. Viswanathan, Manu, Subba Rao","doi":"10.3329/jname.v18i2.52134","DOIUrl":null,"url":null,"abstract":"In this paper, hydrodynamic characteristics of caisson type breakwater are investigated through physical model approach and a numerical model based on the Volume of Fluid (VOF) is validated. The investigations are carried out for varying wave characteristics and depth of water 0.50 m. In an experimental study, to understand the model and scale effects for the desired wave conditions is a critical task in all-time conditions. So, it is also necessary to develop an appropriate numerical model to understand the hydrodynamics of the selected test model. Using the Volume of Fluid (VOF) method and incompressible open channel fluid flow a 2D numerical wave flume is developed using ANSYS- Fluent platform. The wave boundary conditions are adopted by solving the Reynolds-Averaged Navier Stokes equations (RANS equation) and especially with k—ε model to examine the effects of turbulence on the numerical results. The wave forces, wave runup, and wave reflection characteristics on the test model are measured for different wave characteristics, and results obtained from the numerical investigations are comparable with the experimental results to evident the relevance of the developed numerical model.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrodynamic performances of a wall type breakwater - a physical and numerical approach\",\"authors\":\"K. Viswanathan, Manu, Subba Rao\",\"doi\":\"10.3329/jname.v18i2.52134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, hydrodynamic characteristics of caisson type breakwater are investigated through physical model approach and a numerical model based on the Volume of Fluid (VOF) is validated. The investigations are carried out for varying wave characteristics and depth of water 0.50 m. In an experimental study, to understand the model and scale effects for the desired wave conditions is a critical task in all-time conditions. So, it is also necessary to develop an appropriate numerical model to understand the hydrodynamics of the selected test model. Using the Volume of Fluid (VOF) method and incompressible open channel fluid flow a 2D numerical wave flume is developed using ANSYS- Fluent platform. The wave boundary conditions are adopted by solving the Reynolds-Averaged Navier Stokes equations (RANS equation) and especially with k—ε model to examine the effects of turbulence on the numerical results. The wave forces, wave runup, and wave reflection characteristics on the test model are measured for different wave characteristics, and results obtained from the numerical investigations are comparable with the experimental results to evident the relevance of the developed numerical model.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.52134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.52134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Hydrodynamic performances of a wall type breakwater - a physical and numerical approach
In this paper, hydrodynamic characteristics of caisson type breakwater are investigated through physical model approach and a numerical model based on the Volume of Fluid (VOF) is validated. The investigations are carried out for varying wave characteristics and depth of water 0.50 m. In an experimental study, to understand the model and scale effects for the desired wave conditions is a critical task in all-time conditions. So, it is also necessary to develop an appropriate numerical model to understand the hydrodynamics of the selected test model. Using the Volume of Fluid (VOF) method and incompressible open channel fluid flow a 2D numerical wave flume is developed using ANSYS- Fluent platform. The wave boundary conditions are adopted by solving the Reynolds-Averaged Navier Stokes equations (RANS equation) and especially with k—ε model to examine the effects of turbulence on the numerical results. The wave forces, wave runup, and wave reflection characteristics on the test model are measured for different wave characteristics, and results obtained from the numerical investigations are comparable with the experimental results to evident the relevance of the developed numerical model.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.