正象限依赖下概周期相关过程观测密度的小波估计

Moussa Koné, V. Monsan
{"title":"正象限依赖下概周期相关过程观测密度的小波估计","authors":"Moussa Koné, V. Monsan","doi":"10.5539/ijsp.v12n2p1","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a new wavelet estimator of density for the component of a finite mixture under positive quadrant dependence. Our sample is extracted from almost periodically correlated processes. To evaluate our estimator we will determine a convergence speed from an upper bound for the mean integrated squared error (MISE). Our result is compared to the independent case which provides an optimal convergence rate.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet Estimation of a Density From Observations of Almost Periodically Correlated Process Under Positive Quadrant Dependence\",\"authors\":\"Moussa Koné, V. Monsan\",\"doi\":\"10.5539/ijsp.v12n2p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a new wavelet estimator of density for the component of a finite mixture under positive quadrant dependence. Our sample is extracted from almost periodically correlated processes. To evaluate our estimator we will determine a convergence speed from an upper bound for the mean integrated squared error (MISE). Our result is compared to the independent case which provides an optimal convergence rate.\",\"PeriodicalId\":89781,\"journal\":{\"name\":\"International journal of statistics and probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijsp.v12n2p1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v12n2p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一种新的密度小波估计,用于正象限依赖的有限混合分量。我们的样本是从几乎周期性相关的过程中提取的。为了评估我们的估计器,我们将从平均积分平方误差(MISE)的上界确定收敛速度。我们的结果与提供最佳收敛速率的独立情况进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet Estimation of a Density From Observations of Almost Periodically Correlated Process Under Positive Quadrant Dependence
In this paper, we construct a new wavelet estimator of density for the component of a finite mixture under positive quadrant dependence. Our sample is extracted from almost periodically correlated processes. To evaluate our estimator we will determine a convergence speed from an upper bound for the mean integrated squared error (MISE). Our result is compared to the independent case which provides an optimal convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信