G. Sebastiani, Stig Uteng, F. Godtliebsen, J. Polák, J. Brož
{"title":"耐力运动中血糖浓度的测定","authors":"G. Sebastiani, Stig Uteng, F. Godtliebsen, J. Polák, J. Brož","doi":"10.46300/91011.2020.14.14","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a new statistical approach to estimate blood glucose concentration along time during endurance sports based on measurements of glucose concentration in subcutaneous interstitial tissue. The final goal is the monitoring of glucose concentration in blood to maximize performance in endurance sports. Blood glucose concentration control during and after aerobic physical activity could also be useful to reduce the risk of hypoglycemia in type 1 diabetes mellitus subjects. By means of a low invasive technology known as \"continuous glucose monitoring\", glucose concentration in subcutaneous interstitial tissue can now be measured every five minutes. However, it can be expressed as function of blood glucose concentration along time by means of a convolution integral equation. In the training phase of the proposed approach, based on measurements of glucose concentration in both artery and subcutaneous interstitial tissue during physical activity, the parameters of the convolution kernel are estimated. Then, given a new subject performing aerobic physical activity, a deconvolution problem is solved to estimate glucose concentration in blood from continuous glucose monitoring measurements","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Blood Glucose Concentration During Endurance Sports\",\"authors\":\"G. Sebastiani, Stig Uteng, F. Godtliebsen, J. Polák, J. Brož\",\"doi\":\"10.46300/91011.2020.14.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a new statistical approach to estimate blood glucose concentration along time during endurance sports based on measurements of glucose concentration in subcutaneous interstitial tissue. The final goal is the monitoring of glucose concentration in blood to maximize performance in endurance sports. Blood glucose concentration control during and after aerobic physical activity could also be useful to reduce the risk of hypoglycemia in type 1 diabetes mellitus subjects. By means of a low invasive technology known as \\\"continuous glucose monitoring\\\", glucose concentration in subcutaneous interstitial tissue can now be measured every five minutes. However, it can be expressed as function of blood glucose concentration along time by means of a convolution integral equation. In the training phase of the proposed approach, based on measurements of glucose concentration in both artery and subcutaneous interstitial tissue during physical activity, the parameters of the convolution kernel are estimated. Then, given a new subject performing aerobic physical activity, a deconvolution problem is solved to estimate glucose concentration in blood from continuous glucose monitoring measurements\",\"PeriodicalId\":53488,\"journal\":{\"name\":\"International Journal of Biology and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biology and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91011.2020.14.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2020.14.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Estimation of Blood Glucose Concentration During Endurance Sports
In this paper, we describe a new statistical approach to estimate blood glucose concentration along time during endurance sports based on measurements of glucose concentration in subcutaneous interstitial tissue. The final goal is the monitoring of glucose concentration in blood to maximize performance in endurance sports. Blood glucose concentration control during and after aerobic physical activity could also be useful to reduce the risk of hypoglycemia in type 1 diabetes mellitus subjects. By means of a low invasive technology known as "continuous glucose monitoring", glucose concentration in subcutaneous interstitial tissue can now be measured every five minutes. However, it can be expressed as function of blood glucose concentration along time by means of a convolution integral equation. In the training phase of the proposed approach, based on measurements of glucose concentration in both artery and subcutaneous interstitial tissue during physical activity, the parameters of the convolution kernel are estimated. Then, given a new subject performing aerobic physical activity, a deconvolution problem is solved to estimate glucose concentration in blood from continuous glucose monitoring measurements
期刊介绍:
Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.