{"title":"固定式太阳能复合抛物面聚光光伏集热器系统的模糊集理论不确定性分析","authors":"Hoe-Gil Lee, Singiresu S. Rao","doi":"10.1155/2018/2915731","DOIUrl":null,"url":null,"abstract":"The uncertain analysis of fixed solar compound parabolic concentrator (CPC) collector system is investigated for use in combination with solar PV cells. Within solar CPC PV collector systems, any radiation within the collector acceptance angle enters through the aperture and finds its way to the absorber surface by multiple internal reflections. It is essential that the design of any solar collector aims to maximize PV performance since this will elicit a higher collection of solar radiation. In order to analyze uncertainty of the solar CPC collector system in the optimization problem formulation, three objectives are outlined. Seasonal demands are considered for maximizing two of these objectives, the annual average incident solar energy and the lowest month incident solar energy during winter; the lowest cost of the CPC collector system is approached as a third objective. This study investigates uncertain analysis of a solar CPC PV collector system using fuzzy set theory. The fuzzy analysis methodology is suitable for ambiguous problems to predict variations. Uncertain parameters are treated as random variables or uncertain inputs to predict performance. The fuzzy membership functions are used for modeling uncertain or imprecise design parameters of a solar PV collector system. Triangular membership functions are used to represent the uncertain parameters as fuzzy quantities. A fuzzy set analysis methodology is used for analyzing the three objective constrained optimization problems.","PeriodicalId":30460,"journal":{"name":"Journal of Renewable Energy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2915731","citationCount":"4","resultStr":"{\"title\":\"Uncertain Analysis of a Stationary Solar Compound Parabolic Concentrator PV Collector System Using Fuzzy Set Theory\",\"authors\":\"Hoe-Gil Lee, Singiresu S. Rao\",\"doi\":\"10.1155/2018/2915731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncertain analysis of fixed solar compound parabolic concentrator (CPC) collector system is investigated for use in combination with solar PV cells. Within solar CPC PV collector systems, any radiation within the collector acceptance angle enters through the aperture and finds its way to the absorber surface by multiple internal reflections. It is essential that the design of any solar collector aims to maximize PV performance since this will elicit a higher collection of solar radiation. In order to analyze uncertainty of the solar CPC collector system in the optimization problem formulation, three objectives are outlined. Seasonal demands are considered for maximizing two of these objectives, the annual average incident solar energy and the lowest month incident solar energy during winter; the lowest cost of the CPC collector system is approached as a third objective. This study investigates uncertain analysis of a solar CPC PV collector system using fuzzy set theory. The fuzzy analysis methodology is suitable for ambiguous problems to predict variations. Uncertain parameters are treated as random variables or uncertain inputs to predict performance. The fuzzy membership functions are used for modeling uncertain or imprecise design parameters of a solar PV collector system. Triangular membership functions are used to represent the uncertain parameters as fuzzy quantities. A fuzzy set analysis methodology is used for analyzing the three objective constrained optimization problems.\",\"PeriodicalId\":30460,\"journal\":{\"name\":\"Journal of Renewable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/2915731\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/2915731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2915731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertain Analysis of a Stationary Solar Compound Parabolic Concentrator PV Collector System Using Fuzzy Set Theory
The uncertain analysis of fixed solar compound parabolic concentrator (CPC) collector system is investigated for use in combination with solar PV cells. Within solar CPC PV collector systems, any radiation within the collector acceptance angle enters through the aperture and finds its way to the absorber surface by multiple internal reflections. It is essential that the design of any solar collector aims to maximize PV performance since this will elicit a higher collection of solar radiation. In order to analyze uncertainty of the solar CPC collector system in the optimization problem formulation, three objectives are outlined. Seasonal demands are considered for maximizing two of these objectives, the annual average incident solar energy and the lowest month incident solar energy during winter; the lowest cost of the CPC collector system is approached as a third objective. This study investigates uncertain analysis of a solar CPC PV collector system using fuzzy set theory. The fuzzy analysis methodology is suitable for ambiguous problems to predict variations. Uncertain parameters are treated as random variables or uncertain inputs to predict performance. The fuzzy membership functions are used for modeling uncertain or imprecise design parameters of a solar PV collector system. Triangular membership functions are used to represent the uncertain parameters as fuzzy quantities. A fuzzy set analysis methodology is used for analyzing the three objective constrained optimization problems.