{"title":"基于接地尺寸和电导率的433mhz四分之一波单极天线性能限制","authors":"Jinfeng Li","doi":"10.33166/aetic.2022.03.001","DOIUrl":null,"url":null,"abstract":"Among antennas for Industrial, Scientific and Medical (ISM band) applications at 433 MHz, quarter-wave monopole is a reasonably good trade-off between size, gain, and cost. The electrical performance of the monopole is largely dependent on the quality of the ground plane (size and conductivity), which exhibits a practical limit on the achievable gain as most industrial user environments can provide only a finite ground plane of finite electrical conductivity. Establishing traceability in understanding the performance degradation due to such limits due to the grounding dimension and conductivity is becoming mandatory. To this end, this work leverages universal MATLAB in place of off-the-shelf software (HFSS or CST) for the quarter-wave monopole antenna simulation at 433 MHz parametrised with the ground plane’s dimension with respect to the wavelength (λ). Results indicate that by enlarging the ground plane’s size from 0.14 λ to 14 λ, the gain (directivity for PEC) from the 3D radiation pattern rises from 1.79 dBi, then starts levelling off at 6.7 dBi (5.78 λ), until saturating at 7.49 dBi (13 λ). The radiation efficiency and gain of various grounding conductivity scenarios (e.g., gold, aluminium, steel) are also quantified to inform antenna designers and engineers for commercial, industrial, defence and space applications.","PeriodicalId":36440,"journal":{"name":"Annals of Emerging Technologies in Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Limits of 433 MHz Quarter-wave Monopole Antennas due to Grounding Dimension and Conductivity\",\"authors\":\"Jinfeng Li\",\"doi\":\"10.33166/aetic.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among antennas for Industrial, Scientific and Medical (ISM band) applications at 433 MHz, quarter-wave monopole is a reasonably good trade-off between size, gain, and cost. The electrical performance of the monopole is largely dependent on the quality of the ground plane (size and conductivity), which exhibits a practical limit on the achievable gain as most industrial user environments can provide only a finite ground plane of finite electrical conductivity. Establishing traceability in understanding the performance degradation due to such limits due to the grounding dimension and conductivity is becoming mandatory. To this end, this work leverages universal MATLAB in place of off-the-shelf software (HFSS or CST) for the quarter-wave monopole antenna simulation at 433 MHz parametrised with the ground plane’s dimension with respect to the wavelength (λ). Results indicate that by enlarging the ground plane’s size from 0.14 λ to 14 λ, the gain (directivity for PEC) from the 3D radiation pattern rises from 1.79 dBi, then starts levelling off at 6.7 dBi (5.78 λ), until saturating at 7.49 dBi (13 λ). The radiation efficiency and gain of various grounding conductivity scenarios (e.g., gold, aluminium, steel) are also quantified to inform antenna designers and engineers for commercial, industrial, defence and space applications.\",\"PeriodicalId\":36440,\"journal\":{\"name\":\"Annals of Emerging Technologies in Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Emerging Technologies in Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33166/aetic.2022.03.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Emerging Technologies in Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33166/aetic.2022.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Performance Limits of 433 MHz Quarter-wave Monopole Antennas due to Grounding Dimension and Conductivity
Among antennas for Industrial, Scientific and Medical (ISM band) applications at 433 MHz, quarter-wave monopole is a reasonably good trade-off between size, gain, and cost. The electrical performance of the monopole is largely dependent on the quality of the ground plane (size and conductivity), which exhibits a practical limit on the achievable gain as most industrial user environments can provide only a finite ground plane of finite electrical conductivity. Establishing traceability in understanding the performance degradation due to such limits due to the grounding dimension and conductivity is becoming mandatory. To this end, this work leverages universal MATLAB in place of off-the-shelf software (HFSS or CST) for the quarter-wave monopole antenna simulation at 433 MHz parametrised with the ground plane’s dimension with respect to the wavelength (λ). Results indicate that by enlarging the ground plane’s size from 0.14 λ to 14 λ, the gain (directivity for PEC) from the 3D radiation pattern rises from 1.79 dBi, then starts levelling off at 6.7 dBi (5.78 λ), until saturating at 7.49 dBi (13 λ). The radiation efficiency and gain of various grounding conductivity scenarios (e.g., gold, aluminium, steel) are also quantified to inform antenna designers and engineers for commercial, industrial, defence and space applications.