Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere
{"title":"描述可居住行星的前景","authors":"Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere","doi":"10.5802/crphys.154","DOIUrl":null,"url":null,"abstract":"With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for the characterization of habitable planets\",\"authors\":\"Stephane Mazevet, Antonin Affholder, B. Sauterey, A. Bixel, D. Apai, Regis Ferriere\",\"doi\":\"10.5802/crphys.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.154\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.154","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Prospects for the characterization of habitable planets
With thousands of exoplanets now identified, the characterization of habitable planets and the potential identification of inhabited ones is a major challenge for the coming decades. We review the current working definition of habitable planets, the upcoming observational prospects for their characterization and present an innovative approach to assess habitability and inhabitation. This integrated method couples for the first time the atmosphere and the interior modeling with the biological activity based on ecosystem modeling. We review here the first applications of the method to asses the likelihood and impact of methanogenesis for Enceladus, primitive Earth, and primitive Mars. Informed by these applications for solar system situations where habitability and inhabitation is questionned, we show how the method can be used to inform the design of future space observatories by considering habitability and inhabitation of Earth-like exoplanets around sun-like stars.
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.