Jun Teng, Shuang Wang, Zhen-Qiang Yin, Wei Chen, Guan-Jie Fan-Yuan, Guang-Can Guo, Zheng-Fu Han
{"title":"QKD系统中基于LiNbO3的马赫-曾德尔强度调制器的任意偏置控制","authors":"Jun Teng, Shuang Wang, Zhen-Qiang Yin, Wei Chen, Guan-Jie Fan-Yuan, Guang-Can Guo, Zheng-Fu Han","doi":"10.1140/epjqt/s40507-023-00189-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO<sub>3</sub> based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00189-8","citationCount":"0","resultStr":"{\"title\":\"Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system\",\"authors\":\"Jun Teng, Shuang Wang, Zhen-Qiang Yin, Wei Chen, Guan-Jie Fan-Yuan, Guang-Can Guo, Zheng-Fu Han\",\"doi\":\"10.1140/epjqt/s40507-023-00189-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO<sub>3</sub> based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00189-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00189-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00189-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system
Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO3 based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.