{"title":"通过极限集连接多元极值的表示","authors":"N. Nolde, J. Wadsworth","doi":"10.1017/apr.2021.51","DOIUrl":null,"url":null,"abstract":"Abstract The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Linking representations for multivariate extremes via a limit set\",\"authors\":\"N. Nolde, J. Wadsworth\",\"doi\":\"10.1017/apr.2021.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linking representations for multivariate extremes via a limit set
Abstract The study of multivariate extremes is dominated by multivariate regular variation, although it is well known that this approach does not provide adequate distinction between random vectors whose components are not always simultaneously large. Various alternative dependence measures and representations have been proposed, with the most well-known being hidden regular variation and the conditional extreme value model. These varying depictions of extremal dependence arise through consideration of different parts of the multivariate domain, and particularly through exploring what happens when extremes of one variable may grow at different rates from other variables. Thus far, these alternative representations have come from distinct sources, and links between them are limited. In this work we elucidate many of the relevant connections through a geometrical approach. In particular, the shape of the limit set of scaled sample clouds in light-tailed margins is shown to provide a description of several different extremal dependence representations.