{"title":"穆萨提取物制备纳米乳胶凝胶的体外动力学及抗菌作用研究","authors":"Gaanapriya Veeramani, S. Murugaiyan, T. Marimuthu","doi":"10.1680/jbibn.21.00026","DOIUrl":null,"url":null,"abstract":"The study was intended to formulate nanoemulgel from the leaf extract of Musa acuminata. Ethanol and Chloroform were used as solvents in the ratio of 1:8 (%w/v). DL- alpha-Tocopherol, characterized by GCMS, was identified to be the major component with potential biological activities. Based on a pseudo ternary plot, the 1:1 Smix (Surfactant: Co- Surfactant) ratio was optimized as it posed maximum regions of emulsion. The prepared nanoemulgel was evaluated for physical appearance, pH, spreadability, and swelling index. The appearance was pale yellowish-white, translucent within a pH range of 5-5.8. Antimicrobial studies were performed against dandruff-causing microbes (Staphylococcus epidermidis and Malassezia furfur). Invitro studies were carried out for optimized formulations of EG2, EG4, CG2, and CG3. The drug release of 94.28% after 12 h with Higuchi plot of R2 value as 0.99 was observed for EG2. The kinetically optimized formulation, EG2 was found to have good spreadability of 12.2 (g cm) s−1 and a swelling index of 64%.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of Nanoemulgel from Extracts of Musa acuminata: In-Vitro Kinetics and Antimicrobial Studies\",\"authors\":\"Gaanapriya Veeramani, S. Murugaiyan, T. Marimuthu\",\"doi\":\"10.1680/jbibn.21.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study was intended to formulate nanoemulgel from the leaf extract of Musa acuminata. Ethanol and Chloroform were used as solvents in the ratio of 1:8 (%w/v). DL- alpha-Tocopherol, characterized by GCMS, was identified to be the major component with potential biological activities. Based on a pseudo ternary plot, the 1:1 Smix (Surfactant: Co- Surfactant) ratio was optimized as it posed maximum regions of emulsion. The prepared nanoemulgel was evaluated for physical appearance, pH, spreadability, and swelling index. The appearance was pale yellowish-white, translucent within a pH range of 5-5.8. Antimicrobial studies were performed against dandruff-causing microbes (Staphylococcus epidermidis and Malassezia furfur). Invitro studies were carried out for optimized formulations of EG2, EG4, CG2, and CG3. The drug release of 94.28% after 12 h with Higuchi plot of R2 value as 0.99 was observed for EG2. The kinetically optimized formulation, EG2 was found to have good spreadability of 12.2 (g cm) s−1 and a swelling index of 64%.\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jbibn.21.00026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Formulation of Nanoemulgel from Extracts of Musa acuminata: In-Vitro Kinetics and Antimicrobial Studies
The study was intended to formulate nanoemulgel from the leaf extract of Musa acuminata. Ethanol and Chloroform were used as solvents in the ratio of 1:8 (%w/v). DL- alpha-Tocopherol, characterized by GCMS, was identified to be the major component with potential biological activities. Based on a pseudo ternary plot, the 1:1 Smix (Surfactant: Co- Surfactant) ratio was optimized as it posed maximum regions of emulsion. The prepared nanoemulgel was evaluated for physical appearance, pH, spreadability, and swelling index. The appearance was pale yellowish-white, translucent within a pH range of 5-5.8. Antimicrobial studies were performed against dandruff-causing microbes (Staphylococcus epidermidis and Malassezia furfur). Invitro studies were carried out for optimized formulations of EG2, EG4, CG2, and CG3. The drug release of 94.28% after 12 h with Higuchi plot of R2 value as 0.99 was observed for EG2. The kinetically optimized formulation, EG2 was found to have good spreadability of 12.2 (g cm) s−1 and a swelling index of 64%.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.