C. Chang, Chengcheng Tao, Shaojin Wang, Ruhang Zhang, Aina Tian, Jiuchun Jiang
{"title":"基于最优变分模态分解和无量纲特征参数的锂电池故障诊断方法","authors":"C. Chang, Chengcheng Tao, Shaojin Wang, Ruhang Zhang, Aina Tian, Jiuchun Jiang","doi":"10.1115/1.4055536","DOIUrl":null,"url":null,"abstract":"\n Due to the frequent occurrence of electric vehicles safety accidents caused by battery system failures, in order to ensure the normal operation of the vehicle, it is crucial to do fault diagnosis of the electric vehicle lithium battery. This paper presents a fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters for identifying faulty batteries. The method firstly preprocesses the voltage signal of lithium battery by optimal variable mode decomposition to obtain the high and low frequency components of the signal, and reconstructs the high and low frequency components. Then the dimensionless feature parameters are extracted according to the reconstructed signal and feature reduction of the dimensionless feature parameters is carried out by a local linear embedding algorithm. Finally, a local outlier factor algorithm is used to detect faulty batteries. After verified by the operation data before the real electric vehicles thermal runaway failure, this method can detect the faulty battery timely and accurately.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters\",\"authors\":\"C. Chang, Chengcheng Tao, Shaojin Wang, Ruhang Zhang, Aina Tian, Jiuchun Jiang\",\"doi\":\"10.1115/1.4055536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Due to the frequent occurrence of electric vehicles safety accidents caused by battery system failures, in order to ensure the normal operation of the vehicle, it is crucial to do fault diagnosis of the electric vehicle lithium battery. This paper presents a fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters for identifying faulty batteries. The method firstly preprocesses the voltage signal of lithium battery by optimal variable mode decomposition to obtain the high and low frequency components of the signal, and reconstructs the high and low frequency components. Then the dimensionless feature parameters are extracted according to the reconstructed signal and feature reduction of the dimensionless feature parameters is carried out by a local linear embedding algorithm. Finally, a local outlier factor algorithm is used to detect faulty batteries. After verified by the operation data before the real electric vehicles thermal runaway failure, this method can detect the faulty battery timely and accurately.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055536\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
A fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters
Due to the frequent occurrence of electric vehicles safety accidents caused by battery system failures, in order to ensure the normal operation of the vehicle, it is crucial to do fault diagnosis of the electric vehicle lithium battery. This paper presents a fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters for identifying faulty batteries. The method firstly preprocesses the voltage signal of lithium battery by optimal variable mode decomposition to obtain the high and low frequency components of the signal, and reconstructs the high and low frequency components. Then the dimensionless feature parameters are extracted according to the reconstructed signal and feature reduction of the dimensionless feature parameters is carried out by a local linear embedding algorithm. Finally, a local outlier factor algorithm is used to detect faulty batteries. After verified by the operation data before the real electric vehicles thermal runaway failure, this method can detect the faulty battery timely and accurately.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.