{"title":"加权Morrey空间上紧性的外推","authors":"S. Lappas","doi":"10.4064/sm210607-20-9","DOIUrl":null,"url":null,"abstract":"In a previous work, “compact versions” of Rubio de Francia’s weighted extrapolation theorem were proved, which allow one to extrapolate the compactness of an linear operator from just one space to the full range of weighted Lebesgue spaces, where this operator is bounded. In this paper, we extend these results to the setting of weighted Morrey spaces. As applications, we easily obtain new results on the weighted compactness of commutators of Calderón–Zygmund singular integrals, rough singular integrals and Bochner–Riesz multipliers.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extrapolation of compactness on weighted Morrey spaces\",\"authors\":\"S. Lappas\",\"doi\":\"10.4064/sm210607-20-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous work, “compact versions” of Rubio de Francia’s weighted extrapolation theorem were proved, which allow one to extrapolate the compactness of an linear operator from just one space to the full range of weighted Lebesgue spaces, where this operator is bounded. In this paper, we extend these results to the setting of weighted Morrey spaces. As applications, we easily obtain new results on the weighted compactness of commutators of Calderón–Zygmund singular integrals, rough singular integrals and Bochner–Riesz multipliers.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210607-20-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210607-20-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在之前的工作中,我们证明了Rubio de Francia的加权外推定理的“紧化版本”,它允许我们将线性算子的紧性从一个空间外推到该算子有界的加权Lebesgue空间的整个范围。在本文中,我们将这些结果推广到加权Morrey空间的设置。作为应用,我们很容易得到Calderón-Zygmund奇异积分、粗糙奇异积分和Bochner-Riesz乘子对易子的加权紧性的新结果。
Extrapolation of compactness on weighted Morrey spaces
In a previous work, “compact versions” of Rubio de Francia’s weighted extrapolation theorem were proved, which allow one to extrapolate the compactness of an linear operator from just one space to the full range of weighted Lebesgue spaces, where this operator is bounded. In this paper, we extend these results to the setting of weighted Morrey spaces. As applications, we easily obtain new results on the weighted compactness of commutators of Calderón–Zygmund singular integrals, rough singular integrals and Bochner–Riesz multipliers.
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.