基于等密度权函数的GMA前馈补偿精度驱动滞后模型

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kun Xiao, Zhiwen Wang, Hongyuan Wang, Jie Sun, Yelong Zheng, Yin-guo Huang
{"title":"基于等密度权函数的GMA前馈补偿精度驱动滞后模型","authors":"Kun Xiao, Zhiwen Wang, Hongyuan Wang, Jie Sun, Yelong Zheng, Yin-guo Huang","doi":"10.1063/10.0017659","DOIUrl":null,"url":null,"abstract":"Giant magnetostrictive actuators (GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations, including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function (E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 µm and decreases the root-mean-square error in displacement to within 0.5 µm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data; it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A precision-drive hysteresis model with an equal-density weight function for GMA feedforward compensation\",\"authors\":\"Kun Xiao, Zhiwen Wang, Hongyuan Wang, Jie Sun, Yelong Zheng, Yin-guo Huang\",\"doi\":\"10.1063/10.0017659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Giant magnetostrictive actuators (GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations, including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function (E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 µm and decreases the root-mean-square error in displacement to within 0.5 µm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data; it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.\",\"PeriodicalId\":35428,\"journal\":{\"name\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0017659\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0017659","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

超磁致伸缩作动器(GMAs)是一种应用广泛的微纳作动器,在精密工程领域具有重要意义。GMA的精度往往取决于其滞后模型。然而,现有模型存在一些局限性,包括难以识别其参数以及所需建模数据量与达到的精度水平之间的权衡。为了解决这些问题,本文提出了一种基于权函数等密度分割的Preisach逆模型(E-Preisach)。首先对用于计算位移的权函数进行离散化。然后,为了获得更精细的权重分布,将离散的几何单元均匀地除以面积。这可以进一步减小输出位移跨度,并产生更高精度的迟滞模型。该方法简化了参数辨识过程,解决了利用少量建模数据获得高精度的难题。对Preisach和E-Preisach逆模型进行了实验研究和比较。在1 Hz和5 Hz频率下,E-Preisach逆模型在不增加测量的滞后环个数的情况下,将前馈补偿开环控制的最大误差减小到1µm以内,将位移的均方根误差减小到0.5µm以内。因此,E-Preisach逆模型简化了模型结构,所需的建模参数更少。这提供了一种使用少量建模数据的高精度建模方法;它将在主动减振和超精密加工等精密工程领域得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A precision-drive hysteresis model with an equal-density weight function for GMA feedforward compensation
Giant magnetostrictive actuators (GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations, including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function (E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 µm and decreases the root-mean-square error in displacement to within 0.5 µm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data; it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信