离散Bismut公式:部分条件积分和delta套期过程的表示

Q3 Economics, Econometrics and Finance
Naho Akiyama, Toshihiro Yamada
{"title":"离散Bismut公式:部分条件积分和delta套期过程的表示","authors":"Naho Akiyama, Toshihiro Yamada","doi":"10.3233/rda-202070","DOIUrl":null,"url":null,"abstract":"The paper gives discrete conditional integration by parts formula using a Malliavin calculus approach in discrete-time setting. Then the discrete Bismut formula is introduced for asymmetric random walk model and asymmetric exponential process. In particular, a new formula for delta hedging process is obtained as an extension of the Malliavin derivative representation of the delta where the conditional integration by parts formula plays a role in the proof.","PeriodicalId":38805,"journal":{"name":"Risk and Decision Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Bismut formula: Conditional integration by parts and a representation for delta hedging process\",\"authors\":\"Naho Akiyama, Toshihiro Yamada\",\"doi\":\"10.3233/rda-202070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper gives discrete conditional integration by parts formula using a Malliavin calculus approach in discrete-time setting. Then the discrete Bismut formula is introduced for asymmetric random walk model and asymmetric exponential process. In particular, a new formula for delta hedging process is obtained as an extension of the Malliavin derivative representation of the delta where the conditional integration by parts formula plays a role in the proof.\",\"PeriodicalId\":38805,\"journal\":{\"name\":\"Risk and Decision Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk and Decision Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/rda-202070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk and Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/rda-202070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

本文在离散时间条件下,利用马利文演算方法给出了离散条件分部积分公式。然后引入了非对称随机漫步模型和非对称指数过程的离散Bismut公式。特别地,作为delta的Malliavin导数表示的扩展,得到了delta套期保值过程的一个新的公式,其中条件分部积分公式在证明中起了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Bismut formula: Conditional integration by parts and a representation for delta hedging process
The paper gives discrete conditional integration by parts formula using a Malliavin calculus approach in discrete-time setting. Then the discrete Bismut formula is introduced for asymmetric random walk model and asymmetric exponential process. In particular, a new formula for delta hedging process is obtained as an extension of the Malliavin derivative representation of the delta where the conditional integration by parts formula plays a role in the proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Risk and Decision Analysis
Risk and Decision Analysis Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信