正交各向异性介质下微极弹性理论的拉格朗日变分原理

IF 0.3 Q4 MECHANICS
A. V. Romanov
{"title":"正交各向异性介质下微极弹性理论的拉格朗日变分原理","authors":"A. V. Romanov","doi":"10.3103/S0027133023010041","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the variational principle of Lagrange, the Ritz\nmethod and piecewise polynomial serendipity shape functions are\nused to obtain the stiffness matrix and a system of linear\nalgebraic equations in the micropolar theory of elasticity for\northotropic and centrally symmetric material.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"78 1","pages":"23 - 28"},"PeriodicalIF":0.3000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Variational Principle of Lagrange of the Micropolar Elasticity Theory in the Case of Orthotropic Medium\",\"authors\":\"A. V. Romanov\",\"doi\":\"10.3103/S0027133023010041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the variational principle of Lagrange, the Ritz\\nmethod and piecewise polynomial serendipity shape functions are\\nused to obtain the stiffness matrix and a system of linear\\nalgebraic equations in the micropolar theory of elasticity for\\northotropic and centrally symmetric material.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"78 1\",\"pages\":\"23 - 28\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133023010041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133023010041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用拉格朗日变分原理、里兹方法和分段多项式偶然性形状函数,得到了正交各向异性中心对称材料弹性微极理论中的刚度矩阵和线性代数方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Variational Principle of Lagrange of the Micropolar Elasticity Theory in the Case of Orthotropic Medium

In this paper, the variational principle of Lagrange, the Ritz method and piecewise polynomial serendipity shape functions are used to obtain the stiffness matrix and a system of linear algebraic equations in the micropolar theory of elasticity for orthotropic and centrally symmetric material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信