论皮尔斯过程的生成函数

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
C. Charlier, P. Moreillon
{"title":"论皮尔斯过程的生成函数","authors":"C. Charlier, P. Moreillon","doi":"10.1214/22-aap1890","DOIUrl":null,"url":null,"abstract":"The Pearcey process is a universal point process in random matrix theory. In this paper, we study the generating function of the Pearcey process on any number $m$ of intervals. We derive an integral representation for it in terms of a Hamiltonian that is related to a system of $6m+2$ coupled nonlinear equations. We also obtain asymptotics for the generating function as the size of the intervals get large, up to and including the constant term. This work generalizes some recent results of Dai, Xu and Zhang, which correspond to $m=1$.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the generating function of the Pearcey process\",\"authors\":\"C. Charlier, P. Moreillon\",\"doi\":\"10.1214/22-aap1890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pearcey process is a universal point process in random matrix theory. In this paper, we study the generating function of the Pearcey process on any number $m$ of intervals. We derive an integral representation for it in terms of a Hamiltonian that is related to a system of $6m+2$ coupled nonlinear equations. We also obtain asymptotics for the generating function as the size of the intervals get large, up to and including the constant term. This work generalizes some recent results of Dai, Xu and Zhang, which correspond to $m=1$.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1890\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1890","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

皮尔斯过程是随机矩阵理论中的一个普适点过程。本文研究了任意数$m$区间上的peararcey过程的生成函数。我们用哈密顿函数的形式推导了它的一个积分表示,这个哈密顿函数与一个$ 600 + $ 2耦合非线性方程的系统有关。我们也得到了生成函数的渐近性,当区间的大小变大,直到并包括常数项。本文推广了Dai, Xu和Zhang最近的一些结果,这些结果对应于$m=1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the generating function of the Pearcey process
The Pearcey process is a universal point process in random matrix theory. In this paper, we study the generating function of the Pearcey process on any number $m$ of intervals. We derive an integral representation for it in terms of a Hamiltonian that is related to a system of $6m+2$ coupled nonlinear equations. We also obtain asymptotics for the generating function as the size of the intervals get large, up to and including the constant term. This work generalizes some recent results of Dai, Xu and Zhang, which correspond to $m=1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信