恰好包含r对相交弧的对合线

IF 1 Q1 MATHEMATICS
T. Mansour
{"title":"恰好包含r对相交弧的对合线","authors":"T. Mansour","doi":"10.47443/dml.2022.046","DOIUrl":null,"url":null,"abstract":"Abstract The generating function Fr(x) that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their graphical representation is studied. More precisely, an algorithm that computes the generating function Fr(x) for any given r ≥ 0 is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length 2r + 2 without fixed points. The algorithm is implemented in Maple and yields explicit formulas for 0 ≤ r ≤ 4.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involutions containing exactly r pairs of intersecting arcs\",\"authors\":\"T. Mansour\",\"doi\":\"10.47443/dml.2022.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The generating function Fr(x) that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their graphical representation is studied. More precisely, an algorithm that computes the generating function Fr(x) for any given r ≥ 0 is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length 2r + 2 without fixed points. The algorithm is implemented in Maple and yields explicit formulas for 0 ≤ r ≤ 4.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了在n个字母上计数对合的生成函数Fr(x),该对合在它们的图形表示中恰好包含r对相交弧。更精确地说,给出了一种算法,用于计算任何给定r≥0的生成函数Fr(x)。为了导出给定r的结果,该算法对长度为2r+2且没有不动点的对合进行某些例行检查。该算法在Maple中实现,并给出了0≤r≤4的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Involutions containing exactly r pairs of intersecting arcs
Abstract The generating function Fr(x) that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their graphical representation is studied. More precisely, an algorithm that computes the generating function Fr(x) for any given r ≥ 0 is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length 2r + 2 without fixed points. The algorithm is implemented in Maple and yields explicit formulas for 0 ≤ r ≤ 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信