基于模糊神经网络的快速起重装置液压系统故障诊断研究

IF 0.7 Q4 ENGINEERING, MECHANICAL
Yangbin Zheng, Xiao Xue, Jisong Zhang
{"title":"基于模糊神经网络的快速起重装置液压系统故障诊断研究","authors":"Yangbin Zheng, Xiao Xue, Jisong Zhang","doi":"10.13052/ijfp1439-9776.2321","DOIUrl":null,"url":null,"abstract":"In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Fault Diagnosis of Hydraulic System of Fast Erecting Device Based on Fuzzy Neural Network\",\"authors\":\"Yangbin Zheng, Xiao Xue, Jisong Zhang\",\"doi\":\"10.13052/ijfp1439-9776.2321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高架设设备液压系统故障诊断的有效性,将模糊神经网络应用于液压系统的故障诊断。首先,总结了架设机构液压系统的主要故障。架设装置液压系统的主要故障有异响、液压油温度高、液压系统泄漏、液压系统运行速度低,并分析了不同故障的特点。其次,对模糊神经网络的基本理论进行了研究,设计了模糊神经网络框架。设计了模糊神经网络的输入层、模糊层、模糊关系层、模糊运算后的关系层和输出层,并确定了相应的数学模型。建立了模糊神经网络的分析程序。再次,对架设装置中的液压系统进行了仿真分析,BP神经网络在600次迭代后达到收敛,模糊神经网络在400次迭代后到达收敛,模糊神经元网络可以获得比BP神经网络更高的精度,并且模糊神经网络的运行时间小于BP神经网络,仿真结果表明,模糊神经网络能够有效地提高故障诊断的效率和精度。因此,模糊神经网络用于架设装置液压系统的故障诊断是可靠的,具有较高的故障诊断效果,可以为架设装置液压系的健康检测提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Fault Diagnosis of Hydraulic System of Fast Erecting Device Based on Fuzzy Neural Network
In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信