关于三参数威布尔分布形状参数估计

M. Teimouri, Arjun K. Gupta
{"title":"关于三参数威布尔分布形状参数估计","authors":"M. Teimouri, Arjun K. Gupta","doi":"10.6339/JDS.2013.11(3).1110","DOIUrl":null,"url":null,"abstract":"The Weibull distribution has received much interest in reliability theory. The well-known maximum likelihood estimators (MLE) of this fam- ily are not available in closed form expression. In this work, we propose a consistent and closed form estimator for shape parameter of three-parameter Weibull distribution. Apart from high degree of performance, the derived estimator is location and scale-invariant.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"On the Three-Parameter Weibull Distribution Shape Parameter Estimation\",\"authors\":\"M. Teimouri, Arjun K. Gupta\",\"doi\":\"10.6339/JDS.2013.11(3).1110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Weibull distribution has received much interest in reliability theory. The well-known maximum likelihood estimators (MLE) of this fam- ily are not available in closed form expression. In this work, we propose a consistent and closed form estimator for shape parameter of three-parameter Weibull distribution. Apart from high degree of performance, the derived estimator is location and scale-invariant.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/JDS.2013.11(3).1110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(3).1110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

威布尔分布在可靠性理论中引起了很大的兴趣。众所周知,该家族的极大似然估计量(MLE)不能以封闭形式表示。本文提出了三参数威布尔分布形状参数的一致闭形式估计量。该估计器除具有较高的性能外,还具有位置和尺度不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Three-Parameter Weibull Distribution Shape Parameter Estimation
The Weibull distribution has received much interest in reliability theory. The well-known maximum likelihood estimators (MLE) of this fam- ily are not available in closed form expression. In this work, we propose a consistent and closed form estimator for shape parameter of three-parameter Weibull distribution. Apart from high degree of performance, the derived estimator is location and scale-invariant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信