{"title":"高效钙钛矿太阳能电池设计技术进展综述","authors":"George G. Njema, J. Kibet","doi":"10.1155/2023/3801813","DOIUrl":null,"url":null,"abstract":"The search for renewable and sustainable energy for energy security and better environmental protection against hazardous emissions from petro-based fuels has gained significant momentum in the last decade. Towards this end, energy from the sun has proven to be reliable and inexhaustible. Therefore, better light harvesting technologies have to be sought. Herein, the current trends in the development of perovskite solar cells with a focus on device engineering, band alignment, device fabrication with superior light harvesting properties, and numerical simulation of solar cell architectures are critically reviewed. This work will form the basis for future scientist to have a better scientific background on the design of highly efficient solar cell devices, which are cost-effective to fabricate, highly stable, and eco-friendly. This review presents thorough essential information on perovskite solar cell technology and tracks methodically their technological performance overtime. The photovoltaic (PV) technology can help to reduce pollution related to greenhouse gas emissions, criterion pollutant emissions, and emissions from heavy metals and radioactive species by nearly 90%. Following the introduction of highly efficient perovskite solar cell (PSC) technologies, the problems associated with stability, short life-time and lead-based perovskite solar cell configurations have significantly been minimized. The fabrication and simulation of perovskite solar cells has been made possible with advanced technologies and state-of-the-art computational codes. Furthermore, device simulation strategies have lately been used to understand, select appropriate materials, and gain insights into solar cell devices’ physical behavior in order to improve their performances. Numerical simulation softwares such as the 1-dimenional solar cell capacitance simulator (SCAPS-1D), Silvaco ATLAS, and wx-analysis of microelectronic and photonic structures (wxAMPS) used to understand the device engineering of solar cells are critically discussed. Because of the need to produce charge collection selectivity, hole transport materials (HTMs) as well as electron transport materials (ETMs) constitute essential PSC components. In this work, the synthesis of inorganic HTMs, as well as their characteristics and uses in various PSCs comprising mesoporous and planar designs, are explored in detail. It is anticipated that the performance of inorganic HTLs on PSCs would encourage further research which will have a significant influence on the future designs and fabrication of highly efficient solar cells.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Technological Advances in the Design of Highly Efficient Perovskite Solar Cells\",\"authors\":\"George G. Njema, J. Kibet\",\"doi\":\"10.1155/2023/3801813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for renewable and sustainable energy for energy security and better environmental protection against hazardous emissions from petro-based fuels has gained significant momentum in the last decade. Towards this end, energy from the sun has proven to be reliable and inexhaustible. Therefore, better light harvesting technologies have to be sought. Herein, the current trends in the development of perovskite solar cells with a focus on device engineering, band alignment, device fabrication with superior light harvesting properties, and numerical simulation of solar cell architectures are critically reviewed. This work will form the basis for future scientist to have a better scientific background on the design of highly efficient solar cell devices, which are cost-effective to fabricate, highly stable, and eco-friendly. This review presents thorough essential information on perovskite solar cell technology and tracks methodically their technological performance overtime. The photovoltaic (PV) technology can help to reduce pollution related to greenhouse gas emissions, criterion pollutant emissions, and emissions from heavy metals and radioactive species by nearly 90%. Following the introduction of highly efficient perovskite solar cell (PSC) technologies, the problems associated with stability, short life-time and lead-based perovskite solar cell configurations have significantly been minimized. The fabrication and simulation of perovskite solar cells has been made possible with advanced technologies and state-of-the-art computational codes. Furthermore, device simulation strategies have lately been used to understand, select appropriate materials, and gain insights into solar cell devices’ physical behavior in order to improve their performances. Numerical simulation softwares such as the 1-dimenional solar cell capacitance simulator (SCAPS-1D), Silvaco ATLAS, and wx-analysis of microelectronic and photonic structures (wxAMPS) used to understand the device engineering of solar cells are critically discussed. Because of the need to produce charge collection selectivity, hole transport materials (HTMs) as well as electron transport materials (ETMs) constitute essential PSC components. In this work, the synthesis of inorganic HTMs, as well as their characteristics and uses in various PSCs comprising mesoporous and planar designs, are explored in detail. It is anticipated that the performance of inorganic HTLs on PSCs would encourage further research which will have a significant influence on the future designs and fabrication of highly efficient solar cells.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3801813\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/3801813","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Review of the Technological Advances in the Design of Highly Efficient Perovskite Solar Cells
The search for renewable and sustainable energy for energy security and better environmental protection against hazardous emissions from petro-based fuels has gained significant momentum in the last decade. Towards this end, energy from the sun has proven to be reliable and inexhaustible. Therefore, better light harvesting technologies have to be sought. Herein, the current trends in the development of perovskite solar cells with a focus on device engineering, band alignment, device fabrication with superior light harvesting properties, and numerical simulation of solar cell architectures are critically reviewed. This work will form the basis for future scientist to have a better scientific background on the design of highly efficient solar cell devices, which are cost-effective to fabricate, highly stable, and eco-friendly. This review presents thorough essential information on perovskite solar cell technology and tracks methodically their technological performance overtime. The photovoltaic (PV) technology can help to reduce pollution related to greenhouse gas emissions, criterion pollutant emissions, and emissions from heavy metals and radioactive species by nearly 90%. Following the introduction of highly efficient perovskite solar cell (PSC) technologies, the problems associated with stability, short life-time and lead-based perovskite solar cell configurations have significantly been minimized. The fabrication and simulation of perovskite solar cells has been made possible with advanced technologies and state-of-the-art computational codes. Furthermore, device simulation strategies have lately been used to understand, select appropriate materials, and gain insights into solar cell devices’ physical behavior in order to improve their performances. Numerical simulation softwares such as the 1-dimenional solar cell capacitance simulator (SCAPS-1D), Silvaco ATLAS, and wx-analysis of microelectronic and photonic structures (wxAMPS) used to understand the device engineering of solar cells are critically discussed. Because of the need to produce charge collection selectivity, hole transport materials (HTMs) as well as electron transport materials (ETMs) constitute essential PSC components. In this work, the synthesis of inorganic HTMs, as well as their characteristics and uses in various PSCs comprising mesoporous and planar designs, are explored in detail. It is anticipated that the performance of inorganic HTLs on PSCs would encourage further research which will have a significant influence on the future designs and fabrication of highly efficient solar cells.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells