{"title":"宝石二孢子的颜色起源:与刚玉的关系","authors":"Chen Shen, Ren Lu","doi":"10.5741/GEMS.54.2.394","DOIUrl":null,"url":null,"abstract":"position in the gem market due to its rarity, striking pleochroism, and color-change phenomenon (figure 1). The material’s value depends on these factors. A clear understanding of color origin offers considerable benefits for gemological testing, cutting, and even valuation of gem diaspore. By replacing the major elements in definite structural units through isomorphous substitution, trace elements play an important role in the color of gemstones. The AlO6 octahedra is a significant structural unit that produces color when different trace elements substitute for Al. For example, Cr3+ substitutes for Al3+ in the AlO6 octahedra in jadeite and spinel, causing green and red color (Lu, 2012; Malsy, 2012), while the substitution of Fe3+ for Al3+ in sapphire produces yellow color (Emmett et al., 2003). Diaspore and corundum have a similar chemical composition and crystal structure (see figure 2). Diaspore, with the chemical formula AlO(OH), belongs to the orthorhombic space group 2/m 2/m 2/m (Hill, 1979); corundum, with the chemical formula Al2O3, belongs to the trigonal space group 3̅ 2/m (Lewis et al., 1982). The crystal structure of diaspore consists of AlO4(OH)2 octahedra, whereas the corundum crystal structure consists of AlO6 octahedra (Hill, 1979; Lewis et al., 1982). Both types of crystals are composed solely of octahedral units. In addition, the diaspore structure is able to convert to corundum structure through dehydration (Iwai et al., 1973). Due to their closely related crystallographic structure and chemical composition,","PeriodicalId":12600,"journal":{"name":"Gems & Gemology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Color Origin of Gem Diaspore: Correlation to Corundum\",\"authors\":\"Chen Shen, Ren Lu\",\"doi\":\"10.5741/GEMS.54.2.394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"position in the gem market due to its rarity, striking pleochroism, and color-change phenomenon (figure 1). The material’s value depends on these factors. A clear understanding of color origin offers considerable benefits for gemological testing, cutting, and even valuation of gem diaspore. By replacing the major elements in definite structural units through isomorphous substitution, trace elements play an important role in the color of gemstones. The AlO6 octahedra is a significant structural unit that produces color when different trace elements substitute for Al. For example, Cr3+ substitutes for Al3+ in the AlO6 octahedra in jadeite and spinel, causing green and red color (Lu, 2012; Malsy, 2012), while the substitution of Fe3+ for Al3+ in sapphire produces yellow color (Emmett et al., 2003). Diaspore and corundum have a similar chemical composition and crystal structure (see figure 2). Diaspore, with the chemical formula AlO(OH), belongs to the orthorhombic space group 2/m 2/m 2/m (Hill, 1979); corundum, with the chemical formula Al2O3, belongs to the trigonal space group 3̅ 2/m (Lewis et al., 1982). The crystal structure of diaspore consists of AlO4(OH)2 octahedra, whereas the corundum crystal structure consists of AlO6 octahedra (Hill, 1979; Lewis et al., 1982). Both types of crystals are composed solely of octahedral units. In addition, the diaspore structure is able to convert to corundum structure through dehydration (Iwai et al., 1973). Due to their closely related crystallographic structure and chemical composition,\",\"PeriodicalId\":12600,\"journal\":{\"name\":\"Gems & Gemology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gems & Gemology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5741/GEMS.54.2.394\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gems & Gemology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5741/GEMS.54.2.394","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
The Color Origin of Gem Diaspore: Correlation to Corundum
position in the gem market due to its rarity, striking pleochroism, and color-change phenomenon (figure 1). The material’s value depends on these factors. A clear understanding of color origin offers considerable benefits for gemological testing, cutting, and even valuation of gem diaspore. By replacing the major elements in definite structural units through isomorphous substitution, trace elements play an important role in the color of gemstones. The AlO6 octahedra is a significant structural unit that produces color when different trace elements substitute for Al. For example, Cr3+ substitutes for Al3+ in the AlO6 octahedra in jadeite and spinel, causing green and red color (Lu, 2012; Malsy, 2012), while the substitution of Fe3+ for Al3+ in sapphire produces yellow color (Emmett et al., 2003). Diaspore and corundum have a similar chemical composition and crystal structure (see figure 2). Diaspore, with the chemical formula AlO(OH), belongs to the orthorhombic space group 2/m 2/m 2/m (Hill, 1979); corundum, with the chemical formula Al2O3, belongs to the trigonal space group 3̅ 2/m (Lewis et al., 1982). The crystal structure of diaspore consists of AlO4(OH)2 octahedra, whereas the corundum crystal structure consists of AlO6 octahedra (Hill, 1979; Lewis et al., 1982). Both types of crystals are composed solely of octahedral units. In addition, the diaspore structure is able to convert to corundum structure through dehydration (Iwai et al., 1973). Due to their closely related crystallographic structure and chemical composition,
期刊介绍:
G&G publishes original articles on gem materials and research in gemology and related fields. Manuscript topics include, but are not limited to:
Laboratory or field research;
Comprehensive reviews of important topics in the field;
Synthetics, imitations, and treatments;
Trade issues;
Recent discoveries or developments in gemology and related fields (e.g., new instruments or identification techniques, gem minerals for the collector, and lapidary techniques);
Descriptions of notable gem materials and localities;
Jewelry manufacturing arts, historical jewelry, and museum exhibits.