{"title":"具有无界时滞的Rosenblatt过程驱动的脉冲中立型随机积分微分系统的可控性","authors":"Youssef Benkabdi, E. Lakhel","doi":"10.1515/rose-2021-2063","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the controllability of a class of impulsive neutral stochastic integro-differential systems with infinite delay driven by Rosenblatt process in a separable Hilbert space is studied. The controllability result is obtained by using stochastic analysis and a fixed-point strategy. A practical example is provided to illustrate the viability of the abstract result of this work.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Controllability of impulsive neutral stochastic integro-differential systems driven by a Rosenblatt process with unbounded delay\",\"authors\":\"Youssef Benkabdi, E. Lakhel\",\"doi\":\"10.1515/rose-2021-2063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the controllability of a class of impulsive neutral stochastic integro-differential systems with infinite delay driven by Rosenblatt process in a separable Hilbert space is studied. The controllability result is obtained by using stochastic analysis and a fixed-point strategy. A practical example is provided to illustrate the viability of the abstract result of this work.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Controllability of impulsive neutral stochastic integro-differential systems driven by a Rosenblatt process with unbounded delay
Abstract In this paper, the controllability of a class of impulsive neutral stochastic integro-differential systems with infinite delay driven by Rosenblatt process in a separable Hilbert space is studied. The controllability result is obtained by using stochastic analysis and a fixed-point strategy. A practical example is provided to illustrate the viability of the abstract result of this work.