{"title":"分数阶离散方程系统的有界解","authors":"J. Diblík","doi":"10.1515/anona-2022-0260","DOIUrl":null,"url":null,"abstract":"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)={F}_{n}\\left(n,x\\left(n),x\\left(n-1),\\ldots ,x\\left({n}_{0})),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where n 0 ∈ Z {n}_{0}\\in {\\mathbb{Z}} , n n is an independent variable, Δ α {\\Delta }^{\\alpha } is an α \\alpha -order fractional difference, α ∈ R \\alpha \\in {\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\left\\{n\\right\\}\\times {{\\mathbb{R}}}^{n-{n}_{0}+1}\\to {{\\mathbb{R}}}^{s} , s ⩾ 1 s\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\left\\{{n}_{0},{n}_{0}+1,\\ldots \\right\\}\\to {{\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)=A\\left(n)x\\left(n)+\\delta \\left(n),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where A ( n ) A\\left(n) is a square matrix and δ ( n ) \\delta \\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bounded solutions to systems of fractional discrete equations\",\"authors\":\"J. Diblík\",\"doi\":\"10.1515/anona-2022-0260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\\\Delta }^{\\\\alpha }x\\\\left(n+1)={F}_{n}\\\\left(n,x\\\\left(n),x\\\\left(n-1),\\\\ldots ,x\\\\left({n}_{0})),\\\\hspace{1em}n={n}_{0},{n}_{0}+1,\\\\ldots , where n 0 ∈ Z {n}_{0}\\\\in {\\\\mathbb{Z}} , n n is an independent variable, Δ α {\\\\Delta }^{\\\\alpha } is an α \\\\alpha -order fractional difference, α ∈ R \\\\alpha \\\\in {\\\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\\\left\\\\{n\\\\right\\\\}\\\\times {{\\\\mathbb{R}}}^{n-{n}_{0}+1}\\\\to {{\\\\mathbb{R}}}^{s} , s ⩾ 1 s\\\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\\\left\\\\{{n}_{0},{n}_{0}+1,\\\\ldots \\\\right\\\\}\\\\to {{\\\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\\\Delta }^{\\\\alpha }x\\\\left(n+1)=A\\\\left(n)x\\\\left(n)+\\\\delta \\\\left(n),\\\\hspace{1em}n={n}_{0},{n}_{0}+1,\\\\ldots , where A ( n ) A\\\\left(n) is a square matrix and δ ( n ) \\\\delta \\\\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0260\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0260","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
摘要
摘要本文讨论分数阶离散方程组Δαx(n+1)=Fn(n,x(n),x(n-1),…,x(n0)),n=n0,n0+1,…,{\Delta}={F}_{n} \left(n,x\left(n),x\lift(n-1),\ldots,x\lef({n}_{0})),\ hspace{1em}n={n}_{0},{n}_{0}+1,\ldots,其中n 0∈Z{n}_{0}\在{\mathbb{Z}}中,n n是自变量,Δα{\Delta}^{\alpha}是α\alpha阶分数差,α∈R\alpha在{\ mathbb{R}中},Fn:{n}×Rn−n0+1→ Rs{F}_{n} :\left-{n}_{0}+1}\to{\mathbb{R}}^{s},s⩾1s\geqslant 1是一个固定整数,x:{n 0,n 0+1,…}→ R s x:\left\{{n}_{0},{n}_{0}+1,\ldots\right\}\to是一个因变量(未知)。对于每个n⩾n0n\geqslant,使用收回原理来证明图保留在给定域中的解的存在性{n}_{0},然后作为进一步证明线性非齐次离散方程组Δαx(n+1)=a(n)x(n)+δ{1em}n={n}_{0},{n}_{0}+1,\ldots,其中A(n)A\left(n)是一个平方矩阵,δ(n)\delta\left是一个向量函数。举例说明了所导出的陈述,讨论了可能的概括,并提出了未来研究的悬而未决的问题。
Bounded solutions to systems of fractional discrete equations
Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)={F}_{n}\left(n,x\left(n),x\left(n-1),\ldots ,x\left({n}_{0})),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where n 0 ∈ Z {n}_{0}\in {\mathbb{Z}} , n n is an independent variable, Δ α {\Delta }^{\alpha } is an α \alpha -order fractional difference, α ∈ R \alpha \in {\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\left\{n\right\}\times {{\mathbb{R}}}^{n-{n}_{0}+1}\to {{\mathbb{R}}}^{s} , s ⩾ 1 s\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\left\{{n}_{0},{n}_{0}+1,\ldots \right\}\to {{\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)=A\left(n)x\left(n)+\delta \left(n),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where A ( n ) A\left(n) is a square matrix and δ ( n ) \delta \left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.