具有乘性噪声的langevin模拟退火算法的收敛性II:总变分

IF 0.8 Q3 STATISTICS & PROBABILITY
Pierre Bras, G. Pagès
{"title":"具有乘性噪声的langevin模拟退火算法的收敛性II:总变分","authors":"Pierre Bras, G. Pagès","doi":"10.1515/mcma-2023-2009","DOIUrl":null,"url":null,"abstract":"Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\\colon\\mathbb{R}^{d}\\to\\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d ⁢ Y t = − σ ⁢ σ ⊤ ⁢ ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + a ⁢ ( t ) ⁢ σ ⁢ ( Y t ) ⁢ d ⁢ W t + a ⁢ ( t ) 2 ⁢ Υ ⁢ ( Y t ) ⁢ d ⁢ t dY_{t}=-\\sigma\\sigma^{\\top}\\nabla V(Y_{t})\\,dt+a(t)\\sigma(Y_{t})\\,dW_{t}+a(t)^{2}\\Upsilon(Y_{t})\\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ⁢ ( R ) \\sigma\\colon\\mathbb{R}^{d}\\to\\mathcal{M}_{d}(\\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\\colon\\mathbb{R}^{+}\\to\\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d ⁢ Y t = − ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + σ ⁢ d ⁢ W t dY_{t}=-\\nabla V(Y_{t})\\,dt+\\sigma\\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \\bar{Y}_{t} to argmin ⁡ ( V ) \\operatorname{argmin}(V) with the classical schedule a ⁢ ( t ) = A ⁢ log − 1 / 2 ⁡ ( t ) a(t)=A\\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"203 - 219"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation\",\"authors\":\"Pierre Bras, G. Pagès\",\"doi\":\"10.1515/mcma-2023-2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\\\\colon\\\\mathbb{R}^{d}\\\\to\\\\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d ⁢ Y t = − σ ⁢ σ ⊤ ⁢ ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + a ⁢ ( t ) ⁢ σ ⁢ ( Y t ) ⁢ d ⁢ W t + a ⁢ ( t ) 2 ⁢ Υ ⁢ ( Y t ) ⁢ d ⁢ t dY_{t}=-\\\\sigma\\\\sigma^{\\\\top}\\\\nabla V(Y_{t})\\\\,dt+a(t)\\\\sigma(Y_{t})\\\\,dW_{t}+a(t)^{2}\\\\Upsilon(Y_{t})\\\\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ⁢ ( R ) \\\\sigma\\\\colon\\\\mathbb{R}^{d}\\\\to\\\\mathcal{M}_{d}(\\\\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\\\\colon\\\\mathbb{R}^{+}\\\\to\\\\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d ⁢ Y t = − ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + σ ⁢ d ⁢ W t dY_{t}=-\\\\nabla V(Y_{t})\\\\,dt+\\\\sigma\\\\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \\\\bar{Y}_{t} to argmin ⁡ ( V ) \\\\operatorname{argmin}(V) with the classical schedule a ⁢ ( t ) = A ⁢ log − 1 / 2 ⁡ ( t ) a(t)=A\\\\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"29 1\",\"pages\":\"203 - 219\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

研究了具有乘性噪声的langevin模拟退火算法的收敛性,即对于V:R d→R V \colon\mathbb{R} ^{d}\to\mathbb{R}一个最小化的势函数,我们考虑随机微分方程d²Y t=- σ∑∑∞∞∞V(Y t)∑d∑t+a∑(t)∑∑(Y t)∑d∑W t+a∑(t)²∑(t)²{dY_t}=- \sigma\sigma{\top}\nabla V{(Y_t)}\,dt+a(t)²\sigma (Y_t){\,}dW_t{+a(t)}²{}\Upsilon (Y_t){\,dt,其中(W t) }(W_t){是布朗运动,σ:R d→M d²(R) }\sigma\colon\mathbb{R} ^{d}\to\mathcal{M} _d{(}\mathbb{R})是一个自适应(乘性)噪声,a: R +→R + a \colon\mathbb{R} ^{+}\to\mathbb{R} ^{+}是一个递减到0的函数,其中Υ是一个校正项。与经典朗之万方程d¹Y t=-∇V∑(Y t)∑d∑W t dY_t=- {}\nabla V{(Y_t)}\,dt+ \sigma \,{dW_t}相比,允许其依赖于位置带来了更快的收敛速度。在上一篇文章中,我们建立了在l1l ^{1} -Wasserstein距离下,Y t {Y_t}及其相关的欧拉格式Y¯t \bar{Y} _t{到argmin (V) }\operatorname{argmin} (V)的收敛性,其经典调度为a¹(t)= a²log -1/2(t) a(t)= a \log ^{-1/2}(t)。本文证明了该算法在总变差距离上的收敛性。全变分情况的处理难度更大,需要正则化引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation
Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\colon\mathbb{R}^{d}\to\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d ⁢ Y t = − σ ⁢ σ ⊤ ⁢ ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + a ⁢ ( t ) ⁢ σ ⁢ ( Y t ) ⁢ d ⁢ W t + a ⁢ ( t ) 2 ⁢ Υ ⁢ ( Y t ) ⁢ d ⁢ t dY_{t}=-\sigma\sigma^{\top}\nabla V(Y_{t})\,dt+a(t)\sigma(Y_{t})\,dW_{t}+a(t)^{2}\Upsilon(Y_{t})\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ⁢ ( R ) \sigma\colon\mathbb{R}^{d}\to\mathcal{M}_{d}(\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\colon\mathbb{R}^{+}\to\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d ⁢ Y t = − ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + σ ⁢ d ⁢ W t dY_{t}=-\nabla V(Y_{t})\,dt+\sigma\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \bar{Y}_{t} to argmin ⁡ ( V ) \operatorname{argmin}(V) with the classical schedule a ⁢ ( t ) = A ⁢ log − 1 / 2 ⁡ ( t ) a(t)=A\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信