{"title":"具有乘性噪声的langevin模拟退火算法的收敛性II:总变分","authors":"Pierre Bras, G. Pagès","doi":"10.1515/mcma-2023-2009","DOIUrl":null,"url":null,"abstract":"Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\\colon\\mathbb{R}^{d}\\to\\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d Y t = − σ σ ⊤ ∇ V ( Y t ) d t + a ( t ) σ ( Y t ) d W t + a ( t ) 2 Υ ( Y t ) d t dY_{t}=-\\sigma\\sigma^{\\top}\\nabla V(Y_{t})\\,dt+a(t)\\sigma(Y_{t})\\,dW_{t}+a(t)^{2}\\Upsilon(Y_{t})\\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ( R ) \\sigma\\colon\\mathbb{R}^{d}\\to\\mathcal{M}_{d}(\\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\\colon\\mathbb{R}^{+}\\to\\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d Y t = − ∇ V ( Y t ) d t + σ d W t dY_{t}=-\\nabla V(Y_{t})\\,dt+\\sigma\\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \\bar{Y}_{t} to argmin ( V ) \\operatorname{argmin}(V) with the classical schedule a ( t ) = A log − 1 / 2 ( t ) a(t)=A\\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"203 - 219"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation\",\"authors\":\"Pierre Bras, G. Pagès\",\"doi\":\"10.1515/mcma-2023-2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\\\\colon\\\\mathbb{R}^{d}\\\\to\\\\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d Y t = − σ σ ⊤ ∇ V ( Y t ) d t + a ( t ) σ ( Y t ) d W t + a ( t ) 2 Υ ( Y t ) d t dY_{t}=-\\\\sigma\\\\sigma^{\\\\top}\\\\nabla V(Y_{t})\\\\,dt+a(t)\\\\sigma(Y_{t})\\\\,dW_{t}+a(t)^{2}\\\\Upsilon(Y_{t})\\\\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ( R ) \\\\sigma\\\\colon\\\\mathbb{R}^{d}\\\\to\\\\mathcal{M}_{d}(\\\\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\\\\colon\\\\mathbb{R}^{+}\\\\to\\\\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d Y t = − ∇ V ( Y t ) d t + σ d W t dY_{t}=-\\\\nabla V(Y_{t})\\\\,dt+\\\\sigma\\\\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \\\\bar{Y}_{t} to argmin ( V ) \\\\operatorname{argmin}(V) with the classical schedule a ( t ) = A log − 1 / 2 ( t ) a(t)=A\\\\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"29 1\",\"pages\":\"203 - 219\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
摘要
研究了具有乘性噪声的langevin模拟退火算法的收敛性,即对于V:R d→R V \colon\mathbb{R} ^{d}\to\mathbb{R}一个最小化的势函数,我们考虑随机微分方程d²Y t=- σ∑∑∞∞∞V(Y t)∑d∑t+a∑(t)∑∑(Y t)∑d∑W t+a∑(t)²∑(t)²{dY_t}=- \sigma\sigma{\top}\nabla V{(Y_t)}\,dt+a(t)²\sigma (Y_t){\,}dW_t{+a(t)}²{}\Upsilon (Y_t){\,dt,其中(W t) }(W_t){是布朗运动,σ:R d→M d²(R) }\sigma\colon\mathbb{R} ^{d}\to\mathcal{M} _d{(}\mathbb{R})是一个自适应(乘性)噪声,a: R +→R + a \colon\mathbb{R} ^{+}\to\mathbb{R} ^{+}是一个递减到0的函数,其中Υ是一个校正项。与经典朗之万方程d¹Y t=-∇V∑(Y t)∑d∑W t dY_t=- {}\nabla V{(Y_t)}\,dt+ \sigma \,{dW_t}相比,允许其依赖于位置带来了更快的收敛速度。在上一篇文章中,我们建立了在l1l ^{1} -Wasserstein距离下,Y t {Y_t}及其相关的欧拉格式Y¯t \bar{Y} _t{到argmin (V) }\operatorname{argmin} (V)的收敛性,其经典调度为a¹(t)= a²log -1/2(t) a(t)= a \log ^{-1/2}(t)。本文证明了该算法在总变差距离上的收敛性。全变分情况的处理难度更大,需要正则化引理。
Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation
Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\colon\mathbb{R}^{d}\to\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d Y t = − σ σ ⊤ ∇ V ( Y t ) d t + a ( t ) σ ( Y t ) d W t + a ( t ) 2 Υ ( Y t ) d t dY_{t}=-\sigma\sigma^{\top}\nabla V(Y_{t})\,dt+a(t)\sigma(Y_{t})\,dW_{t}+a(t)^{2}\Upsilon(Y_{t})\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ( R ) \sigma\colon\mathbb{R}^{d}\to\mathcal{M}_{d}(\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\colon\mathbb{R}^{+}\to\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d Y t = − ∇ V ( Y t ) d t + σ d W t dY_{t}=-\nabla V(Y_{t})\,dt+\sigma\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \bar{Y}_{t} to argmin ( V ) \operatorname{argmin}(V) with the classical schedule a ( t ) = A log − 1 / 2 ( t ) a(t)=A\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.