i - $\ mathm {C}^*$-代数上的紧量子群结构

IF 0.7 2区 数学 Q2 MATHEMATICS
A. Chirvasitu, Jacek Krajczok, P. Sołtan
{"title":"i - $\\ mathm {C}^*$-代数上的紧量子群结构","authors":"A. Chirvasitu, Jacek Krajczok, P. Sołtan","doi":"10.4171/jncg/516","DOIUrl":null,"url":null,"abstract":"We prove a number of results having to do with equipping type-I $\\mathrm{C}^*$-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the $\\mathrm{C}^*$-algebra in question is an extension of a non-zero finite direct sum of elementary $\\mathrm{C}^*$-algebras by a commutative unital $\\mathrm{C}^*$-algebra then it must be finite-dimensional.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact quantum group structures on type-I $\\\\mathrm{C}^*$-algebras\",\"authors\":\"A. Chirvasitu, Jacek Krajczok, P. Sołtan\",\"doi\":\"10.4171/jncg/516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a number of results having to do with equipping type-I $\\\\mathrm{C}^*$-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the $\\\\mathrm{C}^*$-algebra in question is an extension of a non-zero finite direct sum of elementary $\\\\mathrm{C}^*$-algebras by a commutative unital $\\\\mathrm{C}^*$-algebra then it must be finite-dimensional.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/516\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/516","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一些关于给i型$\ mathm {C}^*$-代数配紧量子群结构的结果,其中两个主要的证明是:这种紧量子群必然是可协的;如果所讨论的$\ mathm {C}^*$-代数是$\ mathm {C}^*$-代数的非零有限直和由可交换一元$\ mathm {C}^*$-代数扩展,那么它一定是有限维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact quantum group structures on type-I $\mathrm{C}^*$-algebras
We prove a number of results having to do with equipping type-I $\mathrm{C}^*$-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the $\mathrm{C}^*$-algebra in question is an extension of a non-zero finite direct sum of elementary $\mathrm{C}^*$-algebras by a commutative unital $\mathrm{C}^*$-algebra then it must be finite-dimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信