遥控水下机器人的协同路径跟踪控制

Eito Sato, Hailong Liu, Yasuaki Orita, N. Sakagami, T. Wada
{"title":"遥控水下机器人的协同路径跟踪控制","authors":"Eito Sato, Hailong Liu, Yasuaki Orita, N. Sakagami, T. Wada","doi":"10.3389/fcteg.2022.1056937","DOIUrl":null,"url":null,"abstract":"In recent years, significant attention has been paid to remotely operated underwater vehicles (ROVs) in the performance of underwater tasks, such as the inspection and maintenance of the underwater infrastructure. The workload of ROV operators tends to be high, even for the skilled operators. Therefore, assistance methods for the operators are desired. This study focuses on a task in which a human operator controls an underwater robot to follow a certain path while visually inspecting objects in the vicinity of the path. In such a task, it is desirable to achieve the speed of trajectory control manually because the visual inspection is performed by a human operator. However, to allocate resources to visual inspection, it is desirable to minimize the workload on the path-following by assisting with the automatic control. Therefore, the objective of this study is to develop a cooperative path-following control method that achieves the above-mentioned task by expanding a robust path-following control law of non-holonomic wheeled vehicles. To simplify this problem, we considered a path-following and visual objects recognition task in a two-dimensional plane. We conducted an experiment with participants (n = 16) who completed the task using the proposed method and manual control. We compared results in terms of object recognition success rate, tracking error, completion time, attention distribution, and workload. The results showed that both the path-following errors and workload of the participants were significantly smaller with the proposed method than with manual control. In addition, subjective responses demonstrated that operator attention tended to be allocated to object recognition rather than robot operation tasks with the proposed method. These results demonstrate the effectiveness of the proposed cooperative path-following control method.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cooperative path-following control of a remotely operated underwater vehicle for human visual inspection task\",\"authors\":\"Eito Sato, Hailong Liu, Yasuaki Orita, N. Sakagami, T. Wada\",\"doi\":\"10.3389/fcteg.2022.1056937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant attention has been paid to remotely operated underwater vehicles (ROVs) in the performance of underwater tasks, such as the inspection and maintenance of the underwater infrastructure. The workload of ROV operators tends to be high, even for the skilled operators. Therefore, assistance methods for the operators are desired. This study focuses on a task in which a human operator controls an underwater robot to follow a certain path while visually inspecting objects in the vicinity of the path. In such a task, it is desirable to achieve the speed of trajectory control manually because the visual inspection is performed by a human operator. However, to allocate resources to visual inspection, it is desirable to minimize the workload on the path-following by assisting with the automatic control. Therefore, the objective of this study is to develop a cooperative path-following control method that achieves the above-mentioned task by expanding a robust path-following control law of non-holonomic wheeled vehicles. To simplify this problem, we considered a path-following and visual objects recognition task in a two-dimensional plane. We conducted an experiment with participants (n = 16) who completed the task using the proposed method and manual control. We compared results in terms of object recognition success rate, tracking error, completion time, attention distribution, and workload. The results showed that both the path-following errors and workload of the participants were significantly smaller with the proposed method than with manual control. In addition, subjective responses demonstrated that operator attention tended to be allocated to object recognition rather than robot operation tasks with the proposed method. These results demonstrate the effectiveness of the proposed cooperative path-following control method.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2022.1056937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2022.1056937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,在执行水下任务(如水下基础设施的检查和维护)时,遥控潜水器(ROV)受到了极大的关注。ROV操作员的工作量往往很高,即使是熟练的操作员也是如此。因此,需要操作员的辅助方法。这项研究的重点是一项任务,在该任务中,操作员控制水下机器人沿着某条路径行走,同时目视检查路径附近的物体。在这样的任务中,希望手动实现轨迹控制的速度,因为视觉检查是由操作员执行的。然而,为了将资源分配给视觉检查,希望通过辅助自动控制来最小化路径跟随上的工作量。因此,本研究的目的是开发一种协同路径跟随控制方法,通过扩展非完整轮式车辆的鲁棒路径跟随控制律来实现上述任务。为了简化这个问题,我们考虑了一个二维平面中的路径跟踪和视觉对象识别任务。我们对使用所提出的方法和手动控制完成任务的参与者(n=16)进行了一项实验。我们比较了物体识别成功率、跟踪误差、完成时间、注意力分布和工作量等方面的结果。结果表明,与手动控制相比,所提出的方法的路径跟随误差和参与者的工作量都显著较小。此外,主观反应表明,使用所提出的方法,操作员的注意力倾向于分配给对象识别,而不是机器人操作任务。这些结果证明了所提出的协同路径跟随控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative path-following control of a remotely operated underwater vehicle for human visual inspection task
In recent years, significant attention has been paid to remotely operated underwater vehicles (ROVs) in the performance of underwater tasks, such as the inspection and maintenance of the underwater infrastructure. The workload of ROV operators tends to be high, even for the skilled operators. Therefore, assistance methods for the operators are desired. This study focuses on a task in which a human operator controls an underwater robot to follow a certain path while visually inspecting objects in the vicinity of the path. In such a task, it is desirable to achieve the speed of trajectory control manually because the visual inspection is performed by a human operator. However, to allocate resources to visual inspection, it is desirable to minimize the workload on the path-following by assisting with the automatic control. Therefore, the objective of this study is to develop a cooperative path-following control method that achieves the above-mentioned task by expanding a robust path-following control law of non-holonomic wheeled vehicles. To simplify this problem, we considered a path-following and visual objects recognition task in a two-dimensional plane. We conducted an experiment with participants (n = 16) who completed the task using the proposed method and manual control. We compared results in terms of object recognition success rate, tracking error, completion time, attention distribution, and workload. The results showed that both the path-following errors and workload of the participants were significantly smaller with the proposed method than with manual control. In addition, subjective responses demonstrated that operator attention tended to be allocated to object recognition rather than robot operation tasks with the proposed method. These results demonstrate the effectiveness of the proposed cooperative path-following control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信