{"title":"热带中庭建筑设计垂直大容量线性槽扩散器的性能评价","authors":"Y. Yau, U. A. Rajput","doi":"10.1080/00038628.2022.2140988","DOIUrl":null,"url":null,"abstract":"This paper proposed a new approach for the efficient air conditioning of large tropical buildings. The current study has two objectives: the design and numerical investigations of the performance of vertically oriented high capacity linear slot diffusers (HCLSD) in an atrium building and the verification and validation of the different turbulence models through laboratory-scale experiments. The HCLSD was investigated with varying angles of inclination of the blades (ϕ = 0o to 25o) for the in-depth performance analyses. The performance was evaluated by monitoring and comparing the velocity and temperature profiles along the vertical lines drawn at different locations in the studied domain. A relatively longer jet throw was noticed through quantitative analysis at ϕ = 0o. Note that more than 33% increment in the face velocity was recorded at this angle. The corresponding terminal velocity of 0.225 m/s was observed at 8 m distance from the diffuser face. The detailed investigations at 0o deflector angle (case-1) were carried out for velocity, temperature field, and thermal comfort indices, i.e. PMV and PPD models. For the occupied zone, the thermal comfort indices were found within the acceptable ranges (i.e. PMV = + 0.1 to +0.9 and PPD = 4% to 20%). Abbreviations: ACMV: Air conditioning and mechanical ventilation; CFD: Computational fluid dynamics; CMH: Cubic meter per hour; DV: Displacement ventilation; HCLSD: High capacity linear slot diffuser; IAQ: Indoor air quality; MV: Mixing ventilation; PMV: Predicted mean vote; PPD: Predicted percentage dissatisfied; RANS: Reynolds-Averaged Navier – Stokes; RNG: Re-Normalization Group; SST: Shear-Stress Transport: SIMPLE: Semi-implicit method for pressure linked equations; VAV: Variable air volume; VSD: Variable speed drives","PeriodicalId":47295,"journal":{"name":"Architectural Science Review","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of an architecturally-designed vertical high capacity linear slot diffuser in a tropical atrium\",\"authors\":\"Y. Yau, U. A. Rajput\",\"doi\":\"10.1080/00038628.2022.2140988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new approach for the efficient air conditioning of large tropical buildings. The current study has two objectives: the design and numerical investigations of the performance of vertically oriented high capacity linear slot diffusers (HCLSD) in an atrium building and the verification and validation of the different turbulence models through laboratory-scale experiments. The HCLSD was investigated with varying angles of inclination of the blades (ϕ = 0o to 25o) for the in-depth performance analyses. The performance was evaluated by monitoring and comparing the velocity and temperature profiles along the vertical lines drawn at different locations in the studied domain. A relatively longer jet throw was noticed through quantitative analysis at ϕ = 0o. Note that more than 33% increment in the face velocity was recorded at this angle. The corresponding terminal velocity of 0.225 m/s was observed at 8 m distance from the diffuser face. The detailed investigations at 0o deflector angle (case-1) were carried out for velocity, temperature field, and thermal comfort indices, i.e. PMV and PPD models. For the occupied zone, the thermal comfort indices were found within the acceptable ranges (i.e. PMV = + 0.1 to +0.9 and PPD = 4% to 20%). Abbreviations: ACMV: Air conditioning and mechanical ventilation; CFD: Computational fluid dynamics; CMH: Cubic meter per hour; DV: Displacement ventilation; HCLSD: High capacity linear slot diffuser; IAQ: Indoor air quality; MV: Mixing ventilation; PMV: Predicted mean vote; PPD: Predicted percentage dissatisfied; RANS: Reynolds-Averaged Navier – Stokes; RNG: Re-Normalization Group; SST: Shear-Stress Transport: SIMPLE: Semi-implicit method for pressure linked equations; VAV: Variable air volume; VSD: Variable speed drives\",\"PeriodicalId\":47295,\"journal\":{\"name\":\"Architectural Science Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00038628.2022.2140988\",\"RegionNum\":3,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00038628.2022.2140988","RegionNum":3,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Performance evaluation of an architecturally-designed vertical high capacity linear slot diffuser in a tropical atrium
This paper proposed a new approach for the efficient air conditioning of large tropical buildings. The current study has two objectives: the design and numerical investigations of the performance of vertically oriented high capacity linear slot diffusers (HCLSD) in an atrium building and the verification and validation of the different turbulence models through laboratory-scale experiments. The HCLSD was investigated with varying angles of inclination of the blades (ϕ = 0o to 25o) for the in-depth performance analyses. The performance was evaluated by monitoring and comparing the velocity and temperature profiles along the vertical lines drawn at different locations in the studied domain. A relatively longer jet throw was noticed through quantitative analysis at ϕ = 0o. Note that more than 33% increment in the face velocity was recorded at this angle. The corresponding terminal velocity of 0.225 m/s was observed at 8 m distance from the diffuser face. The detailed investigations at 0o deflector angle (case-1) were carried out for velocity, temperature field, and thermal comfort indices, i.e. PMV and PPD models. For the occupied zone, the thermal comfort indices were found within the acceptable ranges (i.e. PMV = + 0.1 to +0.9 and PPD = 4% to 20%). Abbreviations: ACMV: Air conditioning and mechanical ventilation; CFD: Computational fluid dynamics; CMH: Cubic meter per hour; DV: Displacement ventilation; HCLSD: High capacity linear slot diffuser; IAQ: Indoor air quality; MV: Mixing ventilation; PMV: Predicted mean vote; PPD: Predicted percentage dissatisfied; RANS: Reynolds-Averaged Navier – Stokes; RNG: Re-Normalization Group; SST: Shear-Stress Transport: SIMPLE: Semi-implicit method for pressure linked equations; VAV: Variable air volume; VSD: Variable speed drives
期刊介绍:
Founded at the University of Sydney in 1958 by Professor Henry Cowan to promote continued professional development, Architectural Science Review presents a balanced collection of papers on a wide range of topics. From its first issue over 50 years ago the journal documents the profession’s interest in environmental issues, covering topics such as thermal comfort, lighting, and sustainable architecture, contributing to this extensive field of knowledge by seeking papers from a broad geographical area. The journal is supported by an international editorial advisory board of the leading international academics and its reputation has increased globally with individual and institutional subscribers and contributors from around the world. As a result, Architectural Science Review continues to be recognised as not only one of the first, but the leading journal devoted to architectural science, technology and the built environment. Architectural Science Review publishes original research papers, shorter research notes, and abstracts of PhD dissertations and theses in all areas of architectural science including: -building science and technology -environmental sustainability -structures and materials -audio and acoustics -illumination -thermal systems -building physics -building services -building climatology -building economics -ergonomics -history and theory of architectural science -the social sciences of architecture