加权图在Erdõs排版中的嵌入

Q4 Mathematics
David Soukup
{"title":"加权图在Erdõs排版中的嵌入","authors":"David Soukup","doi":"10.2140/moscow.2019.8.117","DOIUrl":null,"url":null,"abstract":"Many recent results in combinatorics concern the relationship between the size of a set and the number of distances determined by pairs of points in the set. One extension of this question considers configurations within the set with a specified pattern of distances. In this paper, we use graph-theoretic methods to prove that a sufficiently large set $E$ must contain at least $C_G|E|$ distinct copies of any given weighted tree $G$, where $C_G$ is a constant depending only on the graph $G$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.117","citationCount":"2","resultStr":"{\"title\":\"Embeddings of weighted graphs in Erdős-type\\nsettings\",\"authors\":\"David Soukup\",\"doi\":\"10.2140/moscow.2019.8.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent results in combinatorics concern the relationship between the size of a set and the number of distances determined by pairs of points in the set. One extension of this question considers configurations within the set with a specified pattern of distances. In this paper, we use graph-theoretic methods to prove that a sufficiently large set $E$ must contain at least $C_G|E|$ distinct copies of any given weighted tree $G$, where $C_G$ is a constant depending only on the graph $G$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.117\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

组合数学中的许多最新结果涉及集合的大小和由集合中的点对确定的距离数量之间的关系。这个问题的一个扩展考虑了具有指定距离模式的集合内的配置。在本文中,我们使用图论方法证明了一个足够大的集合$E$必须包含任何给定加权树$G$的至少$C_G|E|$个不同副本,其中$C_G$是一个仅依赖于图$G$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embeddings of weighted graphs in Erdős-type settings
Many recent results in combinatorics concern the relationship between the size of a set and the number of distances determined by pairs of points in the set. One extension of this question considers configurations within the set with a specified pattern of distances. In this paper, we use graph-theoretic methods to prove that a sufficiently large set $E$ must contain at least $C_G|E|$ distinct copies of any given weighted tree $G$, where $C_G$ is a constant depending only on the graph $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信