具有适度潜在半稳定归约的超椭圆曲线模型

IF 1.1 Q1 MATHEMATICS
Omri Faraggi, S. Nowell
{"title":"具有适度潜在半稳定归约的超椭圆曲线模型","authors":"Omri Faraggi, S. Nowell","doi":"10.1112/tlm3.12023","DOIUrl":null,"url":null,"abstract":"Let C be a hyperelliptic curve y2=f(x) over a discretely valued field K . The p ‐adic distances between the roots of f(x) can be described by a completely combinatorial object known as the cluster picture. We show that the cluster picture of C , along with the leading coefficient of f and the action of Gal(K¯/K) on the roots of f , completely determines the combinatorics of the special fibre of the minimal strict normal crossings model of C . In particular, we give an explicit description of the special fibre in terms of this data.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"7 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12023","citationCount":"12","resultStr":"{\"title\":\"Models of hyperelliptic curves with tame potentially semistable reduction\",\"authors\":\"Omri Faraggi, S. Nowell\",\"doi\":\"10.1112/tlm3.12023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be a hyperelliptic curve y2=f(x) over a discretely valued field K . The p ‐adic distances between the roots of f(x) can be described by a completely combinatorial object known as the cluster picture. We show that the cluster picture of C , along with the leading coefficient of f and the action of Gal(K¯/K) on the roots of f , completely determines the combinatorics of the special fibre of the minimal strict normal crossings model of C . In particular, we give an explicit description of the special fibre in terms of this data.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12023\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

设C是离散值域K上的超椭圆曲线y2=f(x)。f(x)的根之间的p-adic距离可以用一个称为聚类图的完全组合对象来描述。我们证明了C的簇图,连同f的前导系数和Gal(K’/K)对f的根的作用,完全决定了C的最小严格正交模型的特殊纤维的组合性。特别是,我们根据这些数据对特殊纤维进行了明确的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models of hyperelliptic curves with tame potentially semistable reduction
Let C be a hyperelliptic curve y2=f(x) over a discretely valued field K . The p ‐adic distances between the roots of f(x) can be described by a completely combinatorial object known as the cluster picture. We show that the cluster picture of C , along with the leading coefficient of f and the action of Gal(K¯/K) on the roots of f , completely determines the combinatorics of the special fibre of the minimal strict normal crossings model of C . In particular, we give an explicit description of the special fibre in terms of this data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信