{"title":"高效可靠性分析的自适应超球克里格法","authors":"I. Yang, H. Prayogo","doi":"10.1017/S0890060422000208","DOIUrl":null,"url":null,"abstract":"Abstract Although an accurate reliability assessment is essential to build a resilient infrastructure, it usually requires time-consuming computation. To reduce the computational burden, machine learning-based surrogate models have been used extensively to predict the probability of failure for structural designs. Nevertheless, the surrogate model still needs to compute and assess a certain number of training samples to achieve sufficient prediction accuracy. This paper proposes a new surrogate method for reliability analysis called Adaptive Hyperball Kriging Reliability Analysis (AHKRA). The AHKRA method revolves around using a hyperball-based sampling region. The radius of the hyperball represents the precision of reliability analysis. It is iteratively adjusted based on the number of samples required to evaluate the probability of failure with a target coefficient of variation. AHKRA adopts samples in a hyperball instead of an n-sigma rule-based sampling region to avoid the curse of dimensionality. The application of AHKRA in ten mathematical and two practical cases verifies its accuracy, efficiency, and robustness as it outperforms previous Kriging-based methods.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive hyperball Kriging method for efficient reliability analysis\",\"authors\":\"I. Yang, H. Prayogo\",\"doi\":\"10.1017/S0890060422000208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although an accurate reliability assessment is essential to build a resilient infrastructure, it usually requires time-consuming computation. To reduce the computational burden, machine learning-based surrogate models have been used extensively to predict the probability of failure for structural designs. Nevertheless, the surrogate model still needs to compute and assess a certain number of training samples to achieve sufficient prediction accuracy. This paper proposes a new surrogate method for reliability analysis called Adaptive Hyperball Kriging Reliability Analysis (AHKRA). The AHKRA method revolves around using a hyperball-based sampling region. The radius of the hyperball represents the precision of reliability analysis. It is iteratively adjusted based on the number of samples required to evaluate the probability of failure with a target coefficient of variation. AHKRA adopts samples in a hyperball instead of an n-sigma rule-based sampling region to avoid the curse of dimensionality. The application of AHKRA in ten mathematical and two practical cases verifies its accuracy, efficiency, and robustness as it outperforms previous Kriging-based methods.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060422000208\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000208","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive hyperball Kriging method for efficient reliability analysis
Abstract Although an accurate reliability assessment is essential to build a resilient infrastructure, it usually requires time-consuming computation. To reduce the computational burden, machine learning-based surrogate models have been used extensively to predict the probability of failure for structural designs. Nevertheless, the surrogate model still needs to compute and assess a certain number of training samples to achieve sufficient prediction accuracy. This paper proposes a new surrogate method for reliability analysis called Adaptive Hyperball Kriging Reliability Analysis (AHKRA). The AHKRA method revolves around using a hyperball-based sampling region. The radius of the hyperball represents the precision of reliability analysis. It is iteratively adjusted based on the number of samples required to evaluate the probability of failure with a target coefficient of variation. AHKRA adopts samples in a hyperball instead of an n-sigma rule-based sampling region to avoid the curse of dimensionality. The application of AHKRA in ten mathematical and two practical cases verifies its accuracy, efficiency, and robustness as it outperforms previous Kriging-based methods.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.