{"title":"对数学生T分布及其多元扩展的若干推理问题","authors":"A. Olosunde, Sylvester Olofintuade","doi":"10.15446/rce.v45n1.90672","DOIUrl":null,"url":null,"abstract":"Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Inferential Problems from Log Student’s T-distribution and its Multivariate Extension\",\"authors\":\"A. Olosunde, Sylvester Olofintuade\",\"doi\":\"10.15446/rce.v45n1.90672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rce.v45n1.90672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v45n1.90672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Some Inferential Problems from Log Student’s T-distribution and its Multivariate Extension
Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.