对数学生T分布及其多元扩展的若干推理问题

Q3 Mathematics
A. Olosunde, Sylvester Olofintuade
{"title":"对数学生T分布及其多元扩展的若干推理问题","authors":"A. Olosunde, Sylvester Olofintuade","doi":"10.15446/rce.v45n1.90672","DOIUrl":null,"url":null,"abstract":"Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Inferential Problems from Log Student’s T-distribution and its Multivariate Extension\",\"authors\":\"A. Olosunde, Sylvester Olofintuade\",\"doi\":\"10.15446/rce.v45n1.90672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rce.v45n1.90672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v45n1.90672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在许多文献中,统计分析中的正态性假设是一种常见的做法,但在可以获得小样本的情况下,正态性假定会导致统计分析中得出错误的结论。由于各种因素,在实践中采集大量样本一直是一个令人严重关切的问题。在本文中,我们进一步推导了对数学生t分布(简称log-t分布)的一些推论性质,这使得它在对右偏小样本数据进行分析时更适合作为对数正态的替代。推导了矩、累积分布函数、生存函数、危险函数和对数凹度等数学和统计性质。我们进一步将结果推广到多变量log-t分布的情况;我们得到了边际分布和条件分布。采用最大似然估计方法进行参数估计,从而得到其最佳临界区域和信息矩阵,从而得到渐近置信区间。在文献中的两个数据集上进行了log-t分布和拟合优度检验的应用,以显示模型何时最合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Inferential Problems from Log Student’s T-distribution and its Multivariate Extension
Assumption of normality in statistical analysis had been a common practice in many literature, but in the event where small sample is obtainable, then normality assumption will lead to erroneous conclusion in the statistical analysis. Taking a large sample had been a serious concern in practice due to various factors. In this paper, we further derived some inferential properties for log student’s t-distribution (simply log-t distribution) which makes it more suitable as substitute to log-normal when carrying out analysis on right-skewed small sample data. Mathematical and Statistical properties such as the moments, cumulative distribution function, survival function, hazard function and log-concavity are derived. We further extend the results to case of multivariate log-t distribution; we obtained the marginal and conditional distributions. The parameters estimation was done via maximum likelihood estimation method, consequently its best critical region and information matrix were derived in order to obtain the asymptotic confidence interval. The applications of log-t distribution and goodness-of-fit test was carried out on two dataset from literature to show when the model is most appropriate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信