具有分布时滞的随机捕食模型分析

IF 0.3 Q4 STATISTICS & PROBABILITY
C. Gokila, M. Sambath
{"title":"具有分布时滞的随机捕食模型分析","authors":"C. Gokila, M. Sambath","doi":"10.1515/rose-2021-2056","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"29 1","pages":"97 - 110"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2021-2056","citationCount":"1","resultStr":"{\"title\":\"Analysis on stochastic predator-prey model with distributed delay\",\"authors\":\"C. Gokila, M. Sambath\",\"doi\":\"10.1515/rose-2021-2056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"29 1\",\"pages\":\"97 - 110\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2021-2056\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们考虑了一个具有疾病和分布延迟的随机捕食-被捕食模型。首先,我们为这种疾病的灭绝以及健康的猎物和捕食者的永久性建立了充分的条件。此外,我们还通过随机李雅普诺夫函数得到了遍历平稳分布存在的条件。最后,我们提供了一些数值模拟来验证我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on stochastic predator-prey model with distributed delay
Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信